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1. Introduction

Many of the facts that we know about the world are not learned through first-hand experience, but are
theresult of information being passed from one person to another. This raises a natural question: how are
such processes of information transmission affected by the capacities of the agents involved? Decades of
memory research have charted the ways in which our memories distort reality, changing the details of
experiences and introducing events that never occurred (see Schacter, Coyle, Fischbach, Mesulam, &
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Sullivan (1995) for an overview). We might thus expect that these memory biases would affect the
transmission of information, since such a process relies on each person remembering a fact accurately.

The question of how memory biases affect information transmission was first investigated in detail
in Sir Frederic Bartlett’s “serial reproduction” experiments (Bartlett, 1932). In this paradigm, a partic-
ipant is shown a stimulus, which could be a story, a passage of text, a joke, or a picture. The participant
is asked to memorize the stimulus and then reconstruct it from memory. The reconstruction produced
by that participant then becomes the stimulus presented to the next participant, with the sequence of
responses being the outcome of process of serial reproduction. In one of his most famous experiments,
Bartlett told English speaking participants a native American folk tale, “The War of the Ghosts.” As a
result of serial reproduction, many supernatural details were lost or replaced by elements familiar in
English culture. In another of his experiments, he showed participants an Egyptian hieroglyph - the
character resembling an owl shown in Fig. 1 - and as a result of serial reproduction (in this case, with
each participant drawing the character from memory) it transformed into a cat. Bartlett interpreted
these studies as showing that people were biased by their own cultural expectations when they recon-
struct information from memory, and that this bias became exaggerated through serial reproduction.

Serial reproduction has become one of the standard methods used to simulate the process of cul-
tural transmission, and several subsequent studies have used this paradigm to examine how cultural
biases affect the transmission of information. For example, researchers have used this method to re-
veal memory biases in children and adults of different professions and nationalities (see Mesoudi
(2007) and Mesoudi & Whiten (2008) for reviews). Recently researchers used updated versions of
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Fig. 1. Results of one of Bartlett’s (1932) serial reproduction experiments. The first participant in the chain was presented with
an Egyptian hieroglyph (which resembles a picture of an owl). The picture was taken away, and the participant was asked to
reconstruct it from memory. Each participant’s reconstruction became the picture seen by the next participant, and the
hieroglyph became an owl and then a cat. These results were interpreted as the outcome of memory biases toward culturally
familiar stimuli. Reproduced with permission from Bartlett (1932).
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Bartlett’s method to study particular cultural biases, such as gender stereotypes (Bangerter, 2000), and
to explore what properties of concepts support their propagation (e.g. Barrett & Nyhof, 2001; Kashima,
2000). In anthropology and evolutionary biology, “diffusion chains,” which are different varieties of
the serial reproduction paradigm, have been widely used to study cultural processes and social learn-
ing in non-human animal societies, such as blackbirds passing alarm calls, foraging behavior in birds,
rats, fish, and monkeys, and tool use in chimpanzees (see Whiten & Mesoudi (2008) for a review).
However, the phenomenon of serial reproduction has not been systematically and formally analyzed,
and most of these studies have used complex stimuli that are semantically rich but hard to control. In
this paper, we formally analyze and empirically evaluate how information is changed by serial repro-
duction, showing how this process relates to memory biases. In particular, we provide a rational anal-
ysis of serial reproduction (in the spirit of Anderson (1990)), considering how information should
change when passed along a chain of rational agents.

At the heart of our analysis of serial reproduction is the question of how memory biases influence
cultural transmission. Biased reconstructions are found in many tasks. For example, people are biased
by their knowledge of the structure of categories when they reconstruct simple stimuli from memory.
One common effect of this kind is that people judge stimuli that cross boundaries of two different cat-
egories to be further apart than those within the same category even when the distances between the
stimuli are the same (Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967). However, biases
need not reflect suboptimal performance. If we assume that memory is solving the problem of extract-
ing and storing information from the noisy signal presented to our senses, we can analyze the process
of reconstruction from memory as a Bayesian inference. Under this view, reconstructions should com-
bine prior knowledge about the world with the information provided by noisy stimuli. Use of prior
knowledge will result in biases, but these biases ultimately make memory more accurate (Huttenl-
ocher, Hedges, & Vevea, 2000).

If this account of reconstruction from memory is true, we would expect the same inference process
to occur at every step of serial reproduction. The effects of memory biases should thus be accumu-
lated. Assuming all participants share the same prior knowledge about the world, serial reproduction
should ultimately reveal the nature of this knowledge. Drawing on recent work exploring other pro-
cesses of information transmission (Griffiths & Kalish, 2005, 2007), we show that a rational analysis of
serial reproduction makes exactly this prediction. To test this account, we explore the special case
where the task is to reconstruct a one-dimensional stimulus using the information that it is drawn
from a fixed Gaussian distribution. In this case we can precisely characterize behavior at every step
of serial reproduction. Specifically, we show that this defines a simple first-order autoregressive, or
AR(1), process, allowing us to draw on a variety of results characterizing such processes. We use these
predictions to test Bayesian models of serial reproduction in a series of laboratory experiments, and
show that the predictions hold for serial reproduction both between- and within-subjects.

The plan of the paper is as follows: we first lay out the Bayesian account of serial reproduction,
starting with a rational analysis of reconstruction from memory. We then show how this Bayesian ac-
count corresponds to the AR(1) process in the case of simple Gaussian distributions, and how the
AR(1) model can accommodate different assumptions about memory storage and reconstruction. In
the main body of the paper, we use this model to motivate four experiments testing the prediction
that serial reproduction reveals memory biases. Finally, we consider the implications of the results
of these experiments in Section 8.

2. A Bayesian view of serial reproduction
We will outline our Bayesian approach to serial reproduction by first considering the problem of
reconstruction from memory, and then asking what happens when the solution to this problem is re-

peated many times, as in serial reproduction.

2.1. Reconstruction from memory

Our goal is to give a rational account of reconstruction from memory, considering the underlying
computational problem and finding the optimal solution to that problem. We will formulate the
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problem of reconstruction from memory as a problem of inferring and storing accurate information
about the world from noisy sensory data. Given a noisy stimulus x, we seek to recover the true state
of the world u that generated that stimulus, storing an estimate it in memory. The optimal solution to
this problem is provided by Bayesian statistics. Previous experience provides a “prior” distribution on
possible states of the world, p(u). On observing x, this can be updated to a “posterior” distribution

p(ulx) by applying Bayes’ rule

___ pxlWp(k)
P = Toepo)dye W

where p(x|u) - the “likelihood” - indicates the probability of observing x if u is the true state of the
world. Having computed p(u|x), a number of schemes could be used to select an estimate of ji to store.
Perhaps the simplest such scheme is sampling from the posterior, with ft ~ p(u|x).

This analysis provides a general schema for modeling reconstruction from memory, applicable for
any form of x and . A simple example is the special case where x and p vary along a single continuous
dimension. In the experiments presented later in the paper we take this dimension to be the width of a
fish, showing people a fish and asking them to reconstruct its width from memory, but the dimension
of interest could be any subjective quantity such as the perceived length, loudness, duration, or bright-
ness of a stimulus. Assume that previous experience establishes that ¢ has a Gaussian distribution,
with u ~ N(uy,03), and that the noise process means that x has a Gaussian distribution with u as
its center, x| ~ N(u, 62). In this case, we can use standard results from Bayesian statistics (Gelman,
Carlin, Stern, & Rubin, 1995) to show that the outcome of Eq. (1) is also a Gaussian distribution, with
p(u|x) being N(Zx + (1 — 1) l4y, 202%), where /. = 1/(1 + 62/33).

The analysis presented in the previous paragraph makes a clear prediction: that the reconstruction
it should be a compromise between the observed value x and the mean of the prior p,, with the terms
of the compromise being set by the ratio of the noise in the data ¢2 to the uncertainty in the prior o3.
This model thus predicts a systematic bias in reconstruction that is not a consequence of an error of
memory, but the optimal solution to the problem of extracting information from a noisy stimulus. The
possibility that memory biases might actually be the consequence of a process that improves the accu-
racy of memory was pointed out by Huttenlocher et al. (2000), who presented a model extremely sim-
ilar to that outlined in this section.

Huttenlocher et al. (2000) conducted several experiments testing this account of memory biases
using simple one-dimensional stimuli such as fish that vary in width. In each experiment participants
were shown stimuli sampled from a probability distribution such as a Gaussian (i.e. normal distribu-
tion) and asked to reconstruct those stimuli from memory. The results showed that people’s recon-
structions interpolated between the observed stimuli and the mean of the trained distribution as
predicted. A similar notion of reconstruction as a weighted average of the mean of prior distribution
and an observation was used by Hemmer and Steyvers (2008), who found that people formed appro-
priate Bayesian reconstructions for realistic stimuli such as images of fruit, and seemed capable of
drawing on prior knowledge at multiple levels of abstraction in doing so. Finally, Stewart, Brown,
and Chater (2005) showed that a similar kind of biased estimation appears in sequential retrieval from
memory.

2.2. Serial reproduction

With a model of how people might approach the problem of reconstruction from memory in hand,
we are now in a position to analyze what happens in serial reproduction, where the stimuli that peo-
ple receive on one trial are the results of a previous reconstruction. On the nth trial, a participant sees a
stimulus x,. The participant then computes p(u|x,) as outlined in the previous section, and stores a
sample jt from this distribution in memory. When asked to produce a reconstruction, the participant
generates a new value x,,; from a distribution that depends on /. If the likelihood, p(x|u), reflects per-
ceptual noise, then it is reasonable to assume that x,,; will be sampled from this distribution, substi-
tuting [ for p. This value of x,,; is the stimulus for the next trial.
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Viewed from this perspective, serial reproduction defines a stochastic process: a sequence of ran-
dom variables evolving over time. In particular, it is a Markov chain, since the reconstruction produced
on the current trial depends only on the value produced on the preceding trial (e.g. Norris, 1997). The
transition probabilities of this Markov chain are

M&HWO=/f@H1MMMMWM )

being the probability that x,.; is produced as a reconstruction for the stimulus x,, which is also the
reconstruction from previous trial. If this Markov chain is ergodic (see Norris (1997) for details) it will
converge to a stationary distribution 7(x), with p(x,|x;) tending to 7(x,) as n — oo. That is, after many
reproductions, we should expect the probability of seeing a particular stimulus being produced as a
reproduction to stabilize to a fixed distribution. Identifying this distribution will help us understand
the consequences of serial reproduction.

The transition probabilities given in Eq. (2) have a special form, being the result of sampling a value
from the posterior distribution p(|x,) and then sampling a value from the likelihood p(x,.1|#). In this
case, it is possible to identify the stationary distribution of the Markov chain (Griffiths & Kalish, 2005,
2007). The stationary distribution of this Markov chain is the prior predictive distribution

mw=/f@WWWMu 3)

being the probability of observing the stimulus x when u is sampled from the prior. This happens be-
cause this Markov chain is a Gibbs sampler for the joint distribution on x and y defined by multiplying
p(x|p) and p(u) (Griffiths & Kalish, 2007). A Gibbs sampler is a Markov chain defined by alternating
between sampling from the conditional distributions p(x|xt) and p(u|x) for some joint distribution
p(x, i), which results in p(x, () as a stationary distribution. This gives a clear characterization of the
consequences of serial reproduction: after many reproductions, the stimuli being produced will be
sampled from the prior distribution assumed by the participants. Convergence to the prior predictive
distribution provides a formal justification for the traditional claims that serial reproduction reveals
cultural biases (e.g., Bartlett, 1932), since those biases would be reflected in the prior.

The convergence results given in the previous paragraph are completely general, applying to any
kind of stimuli, hypotheses, and prior. In the special case of reconstruction of stimuli that vary along
a single dimension, we can also analytically compute the probability density functions for the transi-
tion probabilities and stationary distribution. Applying Eq. (2) using the results summarized in the
previous section, we have Xn.1[x, ~ N(i,, (62 + 02)), where u, = ix, + (1 — 7) 14y, and o2 = 102 Like-
wise, Eq. (3) indicates that the stationary distribution is N(u,, (62 + 63)). The rate at which the Mar-
kov chain converges to the stationary distribution depends on the value of /. When 1 is close to 1,
convergence is slow since y,, is close to x,. As 4 gets closer to 0, u, is more influenced by 1, and con-
vergence is faster. Since 1 = 1/(1 + ¢2/03), the convergence rate thus depends on the ratio of the par-
ticipant’s perceptual noise and the variance of the prior distribution, 62/03. More perceptual noise
results in faster convergence, since the specific value of x, is trusted less; while more uncertainty in
the prior results in slower convergence, since x, is given greater weight.

3. Serial reproduction of one-dimensional stimuli as autoregression

The special case of serial reproduction of one-dimensional stimuli can also give us further insight
into the consequences of modifying our assumptions about storage and reconstruction from memory,
by exploiting a further property of the underlying stochastic process: that it is a first-order autoregres-
sive process, abbreviated to AR(1). The general form of an AR(1) process is

Xn1 =C+ d’xn + €nt1 (4>

where €,.1 ~ N(0, 62). Eq. (4) has the familiar form of a regression equation, predicting one variable as
a linear function of another, plus Gaussian noise. It defines a stochastic process because each variable
is being predicted from that which precedes it in sequence. AR(1) models are widely used to model
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timeseries data, being one of the simplest models for capturing temporal dependency (Box & Jenkins,
1994).

Just as showing that a stochastic process is a Markov chain provides information about its dynam-
ics and asymptotic behavior, showing that it reduces to an AR(1) process provides access to a number
of results characterizing the properties of these processes. If ¢ < 1 the process has a stationary distri-
bution that is Gaussian with mean ¢/(1 — ¢) and variance 2/(1 — ¢*). The autocovariance at a lag of n
iterations is ¢" 02 /(1 — $?), and thus decays geometrically in ¢. An AR(1) process thus converges to its
stationary distribution at a rate determined by ¢.

It is straightforward to show that the stochastic process defined by serial reproduction where a
sample from the posterior distribution on u is stored in memory and a new value x is sampled from
the likelihood is an AR(1) process. Using the results in the previous section, at the (n + 1)th iteration

xn+] - (1 - i)uo + an + 6n+] (5)

where 7 =1/(1+02/03) and €1 ~ N(0, (62 + 02)) with 62 = Ag2. This is an AR(1) process with
c=(1- 2y, ¢ =4 and 62 = 62 + ¢2. Since / is less than 1 for any ¢3 and ¢2, we can find the station-
ary distribution by substituting these values into the expressions given above. As described in the pre-
vious section, the value of 1 determines the trade-off between the prior and the current piece of data,
and thus the convergence rate of the Markov chain.

Identifying serial reproduction for single-dimensional stimuli as an AR(1) process allows us to relax
our assumptions about the way that people are storing and reconstructing information. In the mem-
orization phase, the participant’s memory jt can be (1) a sample from the posterior distribution
p(u|xn), as assumed above, or (2) a value such that jt = argmax,p(u|x,), being the posterior mode,
which is also the mean of the posterior since the mode of a Gaussian is its mean. In the reproduction
phase, the participant’s reproduction x,, .1 can be (1) a noisy reconstruction, which is a sample from the
likelihood p(x,.1|it), as assumed above, or (2) a perfect reconstruction from memory, such that
Xny1 = [ This defines four different models of serial reproduction:

1. Sample-sample (SS): Participants store a sample from posterior distribution of their noisy observa-
tion, and their reconstruction is also a sample from memory.

2. Sample-perfect (SP): Participants store a sample from posterior distribution of their noisy observa-
tion, and they give a perfect reconstruction from memory.

3. Maximize-sample (MS): Participants store the expected value of the posterior distribution of their
noisy observation, and their reconstruction is also a sample from memory.

4. Maximize-perfect (MP): Participants store the expected value of the posterior distribution of their
noisy observation, and they give a perfect reconstruction from memory.

The fourth model is unlikely to work well for human behavior, because no variance is allowed in
the system, so the chain will move to the mean of the prior in a strictly monotonic fashion and stay
there forever. We thus consider only the first three models in the following analysis.

All three of these models can be shown to have the general form of the AR(1) process (Eq. (5)).
What distinguishes between them is the noise terms: in the SS model €,.1 ~ N(u,, (62 + 62)); in
the SP model €., ~ N(,un, Jﬁ), since there is no reproduction noise; and in the MS model,
€ns1 ~ N(1t,,02) as no noise is introduced in memory storage. As shown above, the SS model con-
verges to the prior predictive distribution N(u,, (62 + ¢3)). Using the autoregression analysis, it is
easy to show that the SP and MS models converge to N (,uo,%> and N (uo,%> respectively. Thus,
all three models converge to a distribution determined by the prior. Fig. 2 shows a simulation of
the three types of models. The stationary distribution in the SS model has the largest variance and that
of the SP model has the smallest variance when 62 < a3.

More generally, any model in which reconstructions have a mean value corresponding to
(1 — )y + 7x, and storage and reconstruction are subject to Gaussian noise will reduce to an AR(1)
process, with the only variation between models appearing in the variance of the noise term €. This
significantly increases the generality of our characterization of serial reproduction, but it also means
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Fig. 2. Model simulations for three types of behavior. Panels (a)-(c) show simulated Markov chains with ¢, = 0.5 and 0, = 1.0.
The solid line in each graph is a sequence of sampled values of x,,, and the dotted line and the gray area show the mean and 95%
confidence interval on x,. All samples and statistics are conditioned on x; = 20. Panels (d)-(f) show a histogram of the last 80
values of x, for the Markov chains in Panels (a)-(c). The gray areas are the probability density functions for the stationary
distributions of the three models.

that different models developed within this framework (including the three models introduced above)
cannot be differentiated using empirical data. However, all of these models make the same basic
prediction: that repeatedly reconstructing stimuli from memory will result in convergence to a distri-
bution whose mean corresponds to the mean of the prior.

3.1. Testing the model predictions

In the remainder of the paper we describe four experiments testing the predictions produced by
this model. These experiments all use a serial reproduction paradigm with stimuli that vary only along
one dimension (the width of fish, following Huttenlocher et al. (2000)). By using these simple stimuli,
we are able to provide the first carefully-controlled empirical analysis of the effects of serial reproduc-
tion, and test whether the results match the quantitative predictions produced by our model. Huttenl-
ocher et al. (2000) established that people behave in a way that is consistent with the Bayesian
analysis of reconstruction presented above through a series of experiments using these stimuli. Our
experiments thus replicate and extend these results to the case of serial reproduction.

Experiment 1 follows previous research on serial reproduction in using a between-subjects design,
with the reconstructions of one participant serving as the stimuli for the next. Participants were trained
on the distribution of fish widths associated with a category, establishing a prior distribution for use in
reconstruction. Experiment 2 uses a within-subjects design in which each person reconstructs stimuli
that they themselves produced on a previous trial, testing the potential of this design to reveal the
memory biases of individuals. Experiment 3 removes the training on the prior distribution, allowing
serial reproduction to reveal prior expectations derived from general world knowledge instead of lab-
oratory training. The results of the experiment reveal a general bias that was also reflected in the results
of Experiments 1 and 2, helping to explain a trend observed in the previous experiments. In Experiment
4, we explore the consequences of serial reproduction with a more complex prior — a bimodal distribu-
tion - and examine the influence of categories and context on reconstruction.

4. Experiment 1: between-subjects serial reproduction

This experiment directly tested the basic prediction that the outcome of serial reproduction will
reflect the prior knowledge that people have about the distribution of stimuli. The experiment
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followed the same basic procedure as Bartlett’s (1932) classic experiments, using the reconstruction
task introduced by Huttenlocher et al. (2000). Two groups of participants were trained on different
distributions of a one-dimensional quantity - the width of a schematic fish - that would serve as a
prior for reconstructing similar stimuli from memory. The distributions learned by the two groups dif-
fered in their means, allowing us to examine whether the mean of the distribution produced by serial
reproduction is affected by the prior, as predicted by our model.

4.1. Method

4.1.1. Participants
Forty-six undergraduates from the University of California, Berkeley participated in exchange for
course credit.

4.1.2. Stimuli

Stimuli were the same as those used in Huttenlocher et al. (2000): fish with elliptical bodies and
fan-shaped tails. All the fish stimuli varied only in one dimension, the width of the fish, ranging from
2.63 cm to 5.76 cm. The stimuli were presented on an Apple iMac computer by a Matlab script using
PsychToolBox extensions (Brainard, 1997; Pelli, 1997).

4.1.3. Procedure

Participants received instructions that indicated that they would be working at a fish farm, and
would receive some on-the-job training before beginning work. They were then trained to discrimi-
nate between two categories of fish: fish farm and ocean fish. The width of the fish-farm fish was nor-
mally distributed and that of the ocean fish was uniformly distributed between 2.63 and 5.75 cm. To
make the training process easier, the instructions explained that fish-farm fish are fed on a special diet
and are thus vary around a standard size, while ocean fish have to fend for themselves and have a far
greater range of sizes. The critical manipulation was the parameters of the normal distribution, with
two groups of participants being trained on distributions with different means but the same standard
deviation. In condition A, 1, = 3.66 cm, go = 1.3 cm; in condition B, i, =4.72 cm, 09 = 1.3 cm.

In the training phase, participants first received a block of 60 trials. On each trial, a stimulus was
presented at the center of a computer monitor and participants tried to predict which type of fish it
was by pressing one of the keys on the keyboard and they received feedback about the correctness
of the prediction. The participants were then tested for 20 trials on their knowledge of the two types
of fish. The procedure was the same as the training block except there was no feedback. The training-
testing loop was repeated until the participants reached 80% of optimal performance.! If a participant
did not reach this criterion after five iterations, the experiment halted. All the participants passed the
training phase.

In the reproduction phase, the participants were told that they were going to begin to work on
recording fish sizes for the fish farm. On each trial, a fish stimulus was flashed at the center of the
screen for 500 ms and then disappeared. Another fish of random size appeared at one of four possible
positions near the center of screen and the participants used the up and down arrow keys to adjust the
width of the fish until they thought it matched the fish they just saw. The fish widths seen by the first
participant in each condition were 120 values uniformly spanning the range from 2.63 to 5.75 cm. The
first participant reconstructed these stimuli from memory. Each subsequent participant in each con-
dition was then presented with the reconstructions produced by the previous participant as stimuli,

! The optimal decision strategy used for evaluating performance was the Bayesian strategy under 0-1 loss (i.e. assuming that
some reward is received for a correct answer, but no reward for an incorrect answer). This strategy corresponds to choosing the
category with highest posterior probability for each stimulus. Since our normal (fish-farm fish) and uniform (ocean fish)
distributions overlap, we calculated the upper and lower bounds where the posterior probability of the stimuli under the normal
distribution is greater than under the uniform distribution. The optimal decision strategy is to classify the fish as ocean fish for
sizes outside these boundaries and to classify those within these boundaries as fish-farm fish. Each participant’s responses could
then be scored for their consistency with this strategy.
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and they again tried to reconstruct those fish widths. Thus, the data from each participant constitute
one slice of time in 120 serial reproduction chains.

At the end of the experiment, the participants were given a final 50-trial test to check if their prior
distributions had drifted. Since serial reproduction builds on the responses of previous participants, a
single participant who is not engaged with the task can disrupt the entire experiment. Participants were
thus excluded from the experiment if their data failed any of three conditions: (1) final testing score was
less than 80% of optimal performance; (2) the difference between the reproduced value and stimulus
shown was greater than the difference between the largest and the smallest stimuli in the training
distribution on any trial; (3) there were no adjustments from the starting value of the fish width for more
than half of the trials. If the current participant’s data were rejected, the next participant would see the
data generated by the previous participant. A total of 10 participants were excluded following these
criteria.

4.2. Results and discussion

There were 18 participants in each condition, resulting in 18 generations of serial reproduction.
Fig. 3 shows the initial and final distributions of the reconstructions, together with the plots for the
120 chains in the two conditions. The initial set of stimuli in both conditions A and B were drawn from
the same uniform distribution. The mean reconstructed fish widths produced by the first participants
in these conditions were 4.22 and 4.21 cm respectively, which were not statistically significantly dif-
ferent (t(238) = 0.09, p = 0.93). The histograms in the right panel show the final distributions of the
reconstructions by the 18th participants in the two conditions. The mean reconstructed fish widths
were 3.20 and 3.68 cm respectively, a statistically significant difference (£(238) = 6.93, p < 0.001).
A two-way ANOVA also showed a significant interaction between the starting and ending points of
the 120 chains in the two conditions (F(1,236) = 12.04, p < 0.001). The difference in means matches
the direction of the difference in the training provided in conditions A and B, although the overall size
of the difference is reduced and the means of the stationary distributions were lower than those of the
distributions used in training.

Fig. 4 shows the autoregression plots and the biases in reconstruction. The autoregression plots
compare X, 1 with x,, and the autoregression model outlined above predicts that the resulting distri-
bution should be jointly Gaussian with the mean of x,,; being a linear function of x,. This is exactly
what we see in Fig. 4. The correlation between the stimulus x, and its reconstruction x,, is the cor-
relation between the AR(1) model’s predictions and the data, and this correlation was high in both
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Fig. 3. Initial and final distributions, and the chains for the two conditions in Experiment 1. (a) The histograms for the initial
distributions of stimuli for conditions A and B. (b) The chains of serial reproduction, starting from the first participant’s data,
ending with the 18th participant’s data. (c) The histograms for the ending distributions of stimuli for conditions A and B.
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Fig. 4. Autoregression and bias plots for the two conditions in Experiment 1. (a) The autoregression plots for conditions A
(black) and B (gray). (b) The bias plots for conditions A (black) and B (gray).

conditions, being 0.91 and 0.86 (both p < 0.001) for conditions A and B respectively. Biases in recon-
struction can be identified by evaluating the difference between x,,.1 and x, as a function of x,. This
was the basic dependent measure used by Huttenlocher et al. (2000). Consistent with their results,
the slope of the function relating bias and x, is negative (—0.34 for both conditions A and B,
p < 0.001), confirming the Bayesian model’s prediction that memory of the stimuli are biased towards
the mean of the category distribution.

Finally, we examined whether the Markov assumption underlying our analysis was valid, by com-
puting the correlation between x,,,; and x,,_; given x,,. The resulting partial correlation was low for both
conditions, being 0.04 and 0.01 in conditions A and B respectively (both p > 0.05). This is to be ex-
pected, since the use of a different participant at each step of reproduction ensures that the Markov
assumption should hold, but allows us to rule out any higher-order temporal effects on reconstruction.

The results of the experiment provide support for the basic prediction produced by our analysis of
serial reproduction: chains formed of individuals trained on different prior distributions converged to
different stationary distributions, and those stationary distributions differed in a way that reflected the
difference in the priors. However, the stationary distributions did not correspond exactly to the prior
distributions on which people were trained - a point we will return to in Experiment 3, after examining
whether we obtain similar results when creating serial reproduction chains within-subjects.

5. Experiment 2: within-subjects serial reproduction

The between-subjects design allows us to reproduce the process of information transmission, but
our analysis suggests that serial reproduction might also have promise as a method for investigating
the memory biases of individuals. To explore the potential of this method, we tested the model with a
within-subjects design, in which a participant’s reproduction in the current trial became the stimulus
for that same participant in a later trial. Each participant’s responses over the entire experiment thus
produced a chain of reproductions. Each participant produced three such chains, starting from widely
separated initial values. Control trials and careful instructions were used so that the participants
would not realize that some of the stimuli were their own reproductions.

5.1. Method

5.1.1. Participants
Forty-six undergraduates from the University of California, Berkeley participated in the experiment
in exchange for course credit.
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5.1.2. Stimuli
The stimuli used in this experiment were the same as those used in Experiment 1.

5.1.3. Procedure

The basic procedure was the same as Experiment 1, except in the reproduction phase. Each partic-
ipant’s responses in this phase formed three chains of 40 trials. The chains started with three original
stimuli with width values of 2.63 cm, 4.19 cm, and 5.76 cm, then in the following trials, the stimuli
participants saw were their own reproductions in the previous trials in the same chain. To prevent
participants from realizing this fact, chain order was randomized and the Markov chain trials were
intermixed with 40 control trials in which widths were drawn from the prior distribution.

5.2. Results and discussion

Participants’ data were excluded based on the same criteria as used in Experiment 1, with a lower
testing score of 70% of optimal performance and one additional criterion relevant to the within-sub-
jects case: participants were also excluded if the three chains did not converge, with the criterion for
convergence being that the lower and upper chains must cross the middle chain. After these screening
procedures, data from 40 of the 46 participants were included, with 21 in condition A and 19 in con-
dition B. It took most participants about 20 trials for the chains to converge, so only the second half of
the chains (trials 21-40) were analyzed further.

The locations of the stationary distributions were measured by computing the means of the repro-
duced fish widths for each participant. For conditions A (3.66 cm) and B (4.72 cm), the average of these
means was 3.32 and 4.01 cm respectively (£(38) = 2.41, p = 0.021). The right panel of Fig. 5 shows the
mean values for these two conditions. The basic prediction of the model was borne out: participants
converged to distributions that differed significantly in their means when they were exposed to data
suggesting a different prior. However, the means were in general lower than those of the prior. This
effect was less prominent in the control trials, which produced means of 3.63 and 4.53 cm
respectively.

Fig. 6 shows the chains, training distributions, the Gaussian fits and the autoregression plots for the
second half of the Markov chains for two participants in the two conditions. Fig. 7 shows the autore-
gression and bias plots for all participants. As in Experiment 1, the autoregression plots show a strong
linear relationship between the stimulus x, and the reconstruction x,,;. Again, the correlation was
high in both conditions, with mean values being 0.90 and 0.81 for conditions A and B respectively.
The correlations are significant (p < 0.001) for all participants except for one in each condition, indi-
cating that the AR(1) model’s predictions are highly correlated with the data generated by each par-
ticipant. The mean partial correlation between x,,,; and x,,_; given x, was low, being 0.07 and 0.11 for
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Fig. 5. Stimuli, training distributions and stationary distributions for Experiment 2. Each data point in the right panel shows the
mean of the last 20 iterations for a single participant. Boxes show the 95% confidence interval around the mean for each
condition.
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Fig. 6. Chains and stationary distributions for individual participants from the two conditions in Experiment 2. (a) The three
Markov chains generated by each participant, starting from three different values. (b) Training distributions for each condition.
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Fig. 7. Autoregression and bias plots for the two conditions in Experiment 2. (a) The autoregression plots for conditions A
(black) and B (gray). (b) The bias plots for conditions A (black) and B (gray).

conditions A and B respectively, suggesting that the Markov assumption was satisfied. The partial cor-
relation was significant (p < 0.05) for only one participant in condition B. Similar to Experiment 1, the
effect of bias was shown in significant (p < 0.05) negative slopes in the bias plot, that is, negative cor-
relations between x, and (x,,1 — x,). This was true for all participants except for two in condition A
and one in condition B.

The results of this experiment corresponded well with those of Experiment 1, showing that serial
reproduction has similar consequences whether it takes place between-subjects or within-subjects.
This correspondence is consistent with our analysis, in which the only factor that is relevant to the
convergence of serial reproduction is the repeated reconstruction of stimuli, regardless of whether
those reconstructions come from multiple people or just one person. These results suggest that serial
reproduction can be used not just for exploring cultural biases, but for investigating the memory
biases of individuals. While we examined only a simple form of bias in this experiment - the bias to-
wards the mean of a trained category — we should expect that memory biases that appear small on a
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single trial can be magnified through the process of serial reproduction, providing a useful lens for
exploring the general nature of these biases as well as individual differences.

The correspondence between the results of Experiments 1 and 2 shows up not just in the way in
which human behavior conforms to our model predictions, but also in the way in which it deviates.
While reconstructions tended towards distributions affected by the prior established through training
in both experiments, reflected in the difference in the means of the stationary distributions produced
in the two conditions, the actual means of the stationary distributions differed systematically from the
means of the distributions used in training. Both experiments produced stationary distributions with
means lower than those of the training distributions. This phenomenon suggests that there could be
another source of prior other than the ones participants were trained on, a possibility that we explore
in Experiment 3.

6. Experiment 3: serial reproduction with no training on priors

Experiments 1 and 2 tried to establish different prior distributions for reconstruction from memory
by providing training on different categories of fish. One possible explanation for why the serial repro-
duction chains did not converge to stationary distributions that matched these training distributions is
that the training might have been insufficient to establish strong prior beliefs. In particular, people
may have combined existing expectations about the width of fish with the information provided by
the training data when they formed their estimates of the distributions associated with the different
categories.

Hemmer and Steyvers (2008) explored how prior knowledge influences reconstruction from mem-
ory, and provided a detailed exploration of how such priors might be defined at multiple levels, such
as category and object levels. They conducted experiments in which participants were asked to recon-
struct the size of familiar objects such as fruits and vegetables. The results showed that reconstruc-
tions of objects (e.g., apples) were biased towards the mean size of the superordinate category (e.g.,
fruit), and at the same time, the size of a smaller version of an object was overestimated at reconstruc-
tion while the size of a larger version of the same object was underestimated, reflecting biases at the
levels of objects themselves. To explain this effect, they extended Huttenlocher et al.’s (2000) model
and proposed a hierarchical Bayesian account of these effects, defining priors at multiple levels.

This analysis suggests a simple account of the systematic differences between training distribu-
tions and the stationary distribution of serial reproduction seen in our experiments: people may al-
ready have a prior for the width of fish defined at the superordinate level, and are guided by these
expectations when learning about fish-farm fish in our experiments. We can explore this possibility
by using the serial reproduction method to investigate the priors that people use when they receive
no training. We thus conducted an experiment in which participants performed exactly the same se-
rial reproduction task as in Experiment 2, but they were not given the training phase. Since there is no
training, our Bayesian model predicts that this will converge to a distribution that reflects people’s
general knowledge about the width of fish. If the biases seen in Experiments 1 and 2 are a result of
these superordinate-level expectations, we should expect the mean of this distribution to be smaller
than that of the training distributions used in the two experiments, allowing it to exert an additional
influence on reconstructions that leads to a stationary distribution with a lower mean even when
training is provided.

6.1. Method

6.1.1. Participants
Thirty-four undergraduates from the University of California, Berkeley, participated in the experi-
ment in exchange for course credit.

6.1.2. Stimuli
The stimuli used in this experiment were the same as those used in Experiments 1 and 2.
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6.1.3. Procedure
The basic procedure was the same as Experiment 2, except that there were no training and testing
phases.

6.2. Results and discussion

Participants’ data were excluded based on the second, third, and fourth criteria used in Experiment
2. There were no testing scores since no training was given. This resulted in the data from 28 of the 34
participants being subjected to further analyses. As in Experiment 2, only the final 20 responses pro-
duced by each individual were analyzed, as it took approximately 20 trials for the chains to converge,
and only those data with chains converged were analyzed. The mean width of the fish produced in
these trials was 3.54 cm, significantly less than the mean of the initial values of each chain, 4.19 cm
(t(27) = 4.33, p < 0.001). To preclude the possible explanation of these lower values where the chains
end up as simply a downward bias, we also analyzed the difference scores of starting and ending val-
ues of the upper and lower chains, computed as the mean of the last 20 trials. The mean values of
these two difference scores were 2.21 cm and —0.91 cm for the upper and lower chains, respectively.
All the chains with the lower starting point (2.63 cm) moved to higher values, except for two partic-
ipants. The two-sample t-test also showed significant difference between these scores
(t(54) = 14.62, p < 0.001). These results indicate that people seem to have an a priori expectation that
fish will have widths smaller than those used as our category means, suggesting that the deviations
from the training distributions observed in Experiments 1 and 2 are the consequence of using a prior
that is a compromise between this superordinate-level expectation about the width of fish and the
training data.

7. Experiment 4: serial reproduction with bimodal distributions

In Experiments 1 and 2, we trained people on simple Gaussian distributions to show that serial
reproduction converges to a distribution that reflects memory biases consistent with Gaussian priors.
However, our original analysis of serial reproduction made no assumptions about the form of the pri-
ors, indicating that convergence to the prior should be expected in all cases under our assumptions
about the process of storage and reconstruction. To test if we observe similar results with people
for priors beyond simple Gaussian distributions, we conducted another experiment in which partici-
pants were trained on categories with bimodal distributions, that is, they were given bimodal priors.
This experiment allows us to determine whether serial reproduction just converges to a Gaussian dis-
tribution independent of the prior — a reasonable alternative hypothesis - or is sensitive to the form of
the prior distribution in a way that produces bimodal stationary distributions.

Since learning a single category distribution that is multimodal could be challenging (e.g., McKin-
ley & Nosofsky, 1995), we trained people on two unimodal distributions corresponding to the width
of fish of different species, where species was unambiguously indicated through the color of the fish
(red or blue). The width of fish in each species followed a Gaussian distribution, and these distribu-
tions were selected so that the overall distribution of widths was bimodal. We then asked people to
produce reconstructions of fish that were glimpsed briefly in “darkness,” where there was insuffi-
cient light to see the color of the fish. Under these circumstances, reconstructions should be made
using the overall distribution of widths, providing a bimodal prior. We called this the no color
condition.

Examining serial reproduction for bimodal priors also allows us to investigate an issue that has
arisen in work following up on Huttenlocher et al.’s (2000) original Bayesian analysis of reconstruction
from memory. Sailor and Antoine (2005) conducted experiments of reconstruction from memory in
which people were simultaneously trained on two distinct category distributions, and found that even
when people were reconstructing two distinct categories they tended to produce reproductions biased
toward the overall mean of the stimuli rather than the means of the individual categories. They sug-
gested that this showed an effect of experimental context, which determines the overall range of the
stimuli, rather than an effect of categories on reproduction.



J. Xu, T.L. Griffiths/Cognitive Psychology 60 (2010) 107-126 121

We explored whether people produce reconstructions based on experimental context or on cate-
gory information by adding a second condition to our experiment, in which people reconstructed
the width of the fish as before, but now the colors of the fish were visible. We called this the color con-
dition. If people use a prior appropriate to the category indicated by the color of the fish, we should
expect the serial reproduction chains for fish of different colors to converge to different distributions,
reflecting the training distributions for those categories. The overall stationary distribution should also
be equivalent to the stationary distribution produced in the no color condition. If people simply pro-
duce reconstructions using a single distribution derived from the experimental context, we should ex-
pect no difference between these chains, since they should converge to the same stationary
distribution regardless of category. The stationary distribution should thus be different from that ob-
served in the no color condition.

7.1. Method

7.1.1. Participants
Eighty-five undergraduates from the University of California, Berkeley, participated in the experi-
ment in exchange for course credit.

7.1.2. Stimuli

The stimuli used in this experiment were the same as those used in the previous three experiments,
except that the training distributions were different. The widths of the two types of fish (red and blue)
were normally distributed with x;, = 3.66 cm, and y, =4.72 cm, and ¢; = 0, = 0.13 cm.

7.1.3. Procedure

The basic procedure was the same as Experiment 2, consisting of three phases: training, reproduc-
tion, and testing.

The training phase was a categorization task as in Experiments 1 and 2. Participants were taught to
discriminate two types of fish-farm fish, the red fish and the blue fish. Participants saw fish in “dark-
ness” (grey fish), and guessed the color (blue or red). They then received feedback about the color of
the fish. The number of trials and criterion for success was the same as that of the previous
experiments.

The reproduction phase consisted of four chains of 40 trials, starting from 2.63 and 5.75 cm. In the
no color condition, all the fish were shown in grey. In the color condition, two chains were presented in
red and another two other chains were in blue. As with the previous experiments, the chains were ran-
domized and mixed with 40 control trials.

The test phase was the same as Experiments 1 and 2, in which participants judge the category of
fish stimuli as in the training phase, but no feedback was given.

7.2. Results and discussion

Participants were excluded based on the same criteria used in Experiment 2. The data from 70 of
the 85 participants passed these criteria and were analyzed further, with 35 in each condition (no color
and color). Again, only the second half of each chain was analyzed.

Fig. 8 shows the chains produced by two participants in the two conditions, as well as the Gaussian
fits of the training data and last 20 trials of the reproduction chains. To test whether people had con-
verged to unimodal or bimodal distributions, we fit each individual’s data using a single Gaussian and
a mixture of Gaussians with two components. Fitting was done by maximume-likelihood estimation.
For the no color condition, the parameters of the mixture of Gaussians were estimated using the Expec-
tation-Maximization algorithm (Dempster, Laird, & Rubin, 1977), since the assignment of individual
data points to Gaussian components was a latent variable. For the color condition, separate Gaussians
were estimated from the responses in the red and blue chains independently, with the result being a
mixture of the two distributions.

A better fit by the mixture of Gaussians than the single Gaussian would provide evidence in favor of
the prediction that serial reproduction converges to a distribution reflecting the bimodal prior in the no
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Fig. 8. Chains and stationary distributions for individual participants from the two conditions in Experiment 4. (a) The four
Markov chains generated by each participant, starting from four different values. In condition A, black and white plot markers
are the red and blue fish chains respectively, and in condition B, all the chains are gray fish. (b) Training distributions for each
condition, black and light-gray plots being the red and blue fish respectively. (c) Gaussian fits for the last 20 iterations of each
participant’s data. Black and light-gray plots in condition A are the red and blue fish chains, and both plots in condition B are the
gray chains.

color condition, and that it converges to different distributions for different categories (rather than a
single distribution guided by context) in the color condition. We compared the fit of the two models
in each condition using likelihood-ratio tests. Since the single Gaussian model is a special case of the
mixture of Gaussians, twice the difference between the log-likelihoods of the two models should follow
the y? distribution with degrees of freedom equal to the difference in the number of parameters of the
models under the assumption the simpler single Gaussian model is true (Rice, 1995). To confirm the the
results of the likelihood-ratio tests, we also computed the Akaike Information Criterion (AIC; Akaike,
1974) and Bayesian Information Criterion (BIC; Schwarz, 1978) values as model selection measures.

In the color condition, likelihood-ratio tests showed that the data of 34 out of 35 participants were
significantly better fit by the two Gaussian model (all p < 0.05). Both AIC and BIC values indicated ex-
actly the same result. The average values of the means of the two Gaussians for those 34 participants
are 3.10 and 3.91 cm, and a two-samples t-test showed that these means are significantly different
(t(66) = 5.48, p < 0.001). These results indicate that for the majority of participants in the “color”
condition, where serial reproduction was done with the context of the color of each category present,
the chains converged to bimodal distributions reflecting the priors established through training.

In the no color condition, one participant’s data produced degenerate results for maximume-likeli-
hood estimation and were omitted from further analysis. Likelihood-ratio tests showed that the data
of 18 out of the remaining 34 participants were significantly better fit by the two Gaussian model (all
p < 0.05). The average values of the means of the two Gaussian components for those 18 participants’
data were 3.00 and 4.08 cm, and a two-samples t-test showed that these means are significantly dif-
ferent (¢(34) = 4.67, p < 0.001). Thus for about two thirds of the participants serial reproduction con-
verged to a bimodal distribution. The AIC and BIC values showed converging results: 22 and 15 out 34
participants’ data were better fit by the two Gaussian model using the AIC and BIC criteria respec-
tively, consistent with the greater conservatism that the BIC displays towards more complex models.

These results support two conclusions. First, the finding that at least some of our participants pro-
duced bimodal stationary distributions in the no color condition indicates that serial reproduction is
sensitive to the form of the prior and not just its mean and variance. This complements our observa-
tion of convergence to the prior in previous experiments, showing that this property of serial
reproduction generalizes beyond simple Gaussian priors. We do not view the fact that between a
half and two thirds of participants (depending on model selection measure) produced bimodal
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distributions as a major problem, since our primary goal was to provide an existence proof for conver-
gence to other distributions, and a variety of factors including overestimating the variance of the
categories and the relatively small number of trials in each chain could have resulted in the stationary
distributions appearing unimodal. Second, the overwhelming tendency for people to converge to
stationary distributions best characterized by two Gaussians in the color condition indicates that their
reconstructions were guided by the category of the stimulus rather than general experimental context,
contrary to the claims of Sailor and Antoine (2005). This conclusion is further supported by the
production of bimodal stationary distributions even in the no color condition, where the absence of
category cues would presumably strengthen the reliance on general experimental context.

8. General discussion

We have presented a Bayesian analysis of serial reproduction, providing both general predictions
about the outcome of this process for arbitrary stimuli and specific predictions for the special case
of one-dimensional stimuli with Gaussian priors. The results of our four experiments confirm the pre-
dictions produced by this analysis. Experiments 1 and 2 showed, in both within-subject and between-
subject cases, that serial reproduction using one-dimensional stimuli with Gaussian priors converged
to a distribution consistent with the prior on which participants were trained. Using serial reproduc-
tion without training, Experiment 3 revealed people’s general expectations about the size of fish were
consistent with a systematic bias observed in Experiments 1 and 2. In Experiment 4, we tested
whether the predictions of our Bayesian analysis held beyond simple Gaussian distributions by estab-
lishing bimodal distributions as priors. The results confirmed that serial reproduction converged to bi-
modal distributions reflecting those priors, and also tested the hypothesis that reconstruction is biased
by the context of the stimuli. The results of this experiment showed that category structure and not
general experimental context seemed to be guiding people’s reconstructions. Those results also dem-
onstrate that serial reproduction may be an effective and more sensitive way of tapping people’s prior
knowledge of the world.

The theoretical analysis and experimental results we have presented in this paper make contact
with an experimental literature on reconstruction from memory and memory biases revealed through
serial reproduction that goes back to the 1930s. However, this phenomenon has not been formally
analyzed before and most previous research used complex stimuli that are hard to control and difficult
to interpret. To our knowledge, ours is the first detailed mathematical analysis of serial reproduction,
and the first formal confirmation of Bartlett’s (1932) conclusion that the outcome of serial reproduc-
tion reflects people’s biases. Our use of simple one-dimensional stimuli allowed us to define an even
more precise model based on first-order autoregressive processes, and provided a way to develop a
well-controlled experimental method that could be used in a quantitative test of the predictions of
our model. However, the Markov chain analysis also generalizes to any kind of stimuli, hypotheses,
and prior distribution, opening a lot of opportunities for further exploration of the relationship be-
tween memory biases and serial reproduction. In the remainder of the paper we highlight some con-
nections to other research and consider the limitations and possible future directions of this work.

8.1. Connections to other research

The work we have presented here has connections to two other lines of research exploring how
ideas from Bayesian statistics can be used to understand human cognition: models of reconstruction
from memory, and iterated learning. We will briefly summarize these two sets of connections in turn.

8.1.1. Reconstruction from memory

As discussed above, previous papers have proposed a Bayesian analysis of reconstruction from
memory. Huttenlocher et al. (2000) proposed that reconstructions should be a compromise between
the observed value and the mean of a category in order to minimize reconstruction error. The resulting
model is equivalent to that obtained by treating the problem as one of Bayesian inference with a
Gaussian prior. Hemmer and Steyvers (2008) took an explicitly Bayesian perspective on this problem
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and extended Huttenlocher et al.’s analysis to other priors, such as hierarchical priors defined at the
level of both individual objects and categories. They explored the memory biases shown with real cat-
egories using naturalistic stimuli, showing that people exhibit relatively strong biases in a memory
task using these categories. Stewart et al. (2005) explored a similar model in the context of sequential
effects on memory recall.

Our primary theoretical contribution in this paper is an analysis of the predictions that this Bayes-
ian account of reconstruction from memory makes about serial reproduction. This analysis extends
the scope of the phenomena to which Bayesian models of reconstruction have been applied, but is
otherwise consistent with the work of Huttenlocher et al. (2000), Hemmer and Steyvers (2008), and
Stewart et al. (2005). The fact that this account produces predictions that are consistent with the con-
clusions of Bartlett (1932) and with our own experiments when applied to serial reproduction pro-
vides further support for its utility as a model of reconstruction from memory.

8.1.2. Iterated learning

The key step in proving that serial reproduction converges to distribution determined by the prior
was noting that alternating between sampling u from the posterior distribution p(u|x) and x from the
likelihood p(x|u) defined a Markov chain with stationary distribution p(x, ) = p(x|¢)p(w). While this
is a Markov chain of a type commonly used in Bayesian statistics, Griffiths and Kalish (2007) observed
that such a process could provide a natural model of the cultural transmission of information. In par-
ticular, they showed that the process of iterated learning, in which a sequence of people each learns
from data generated by the previous person and then generates the data provided to the next person,
could be analyzed as a Markov chain of exactly this kind.

Griffiths and Kalish (2005, 2007) analyzed iterated learning for a sequence of Bayesian learners,
each of whom forms a hypothesis based on the data generated by the previous learner. If learners sam-
ple hypotheses h from the posterior distribution p(h|d) and data d from the likelihood p(d|h), the result
is a Markov chain that converges to p(d, h) = p(d|h)p(h). As a consequence, the probability that a lear-
ner selects a particular hypothesis h on a given iteration converges to the prior probability of that
hypothesis, p(h).

While iterated learning was originally proposed as a way to model language evolution (Kirby,
2001), the prediction of convergence to the prior is interesting in the context of cultural evolution
more generally, since learning is one of the ways in which information is transmitted between people.
It also suggests that we might be able to identify the biases that guide human learning by reproducing
the process of iterated learning in the laboratory. This basic prediction has been confirmed through
experiments with human participants showing that iterated learning of functions (Kalish, Griffiths,
& Lewandowsky, 2007) and categories (Griffiths, Christian, & Kalish, 2008) results in an increase in
the prevalence of concepts that are easy to learn (i.e. those that have high prior probability).

Iterated learning and serial reproduction have a basic structural correspondence, both being con-
cerned with the transmission of information along a chain of individuals. Both are thus instances of
a paradigm known as a “diffusion chain” in the broader anthropological literature (for a review, see
Mesoudi (2007)). The key difference between the two is the mechanism of transmission - the kind
of cognitive process involved. In iterated learning this mechanism is learning, while in serial reproduc-
tion it is memory. The connection between the two paradigms that we draw on here results from
treating both learning and memory as inductive problems that can be solved via Bayesian inference.

The results we present in this paper thus complement the work on iterated learning mentioned
above, showing how similar theoretical analyses and empirical findings hold for transmission of infor-
mation via reconstruction from memory. This broadens the scope of cultural transmission phenomena
we might hope to explain, as well as the range of psychological biases we have the opportunity to
investigate. It also provides a link to an empirical literature within psychology that goes back over
70 years, and a way to validate Bartlett’s (1932) original claims about the effects of serial reproduction.

8.2. Limitations and future directions

While our theoretical results apply for arbitrary stimuli and prior distributions, the experiments we
presented in this paper used only one-dimensional stimuli and prior distributions that can be
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expressed as mixtures of Gaussians. Our choice to use these stimuli and priors was motivated by a de-
sire for simple, well-controlled experiments about which we could make clear quantitative predic-
tions and the existing empirical literature based on similar assumptions (Huttenlocher et al., 2000;
Hemmer & Steyvers, 2008; Stewart et al., 2005). However, an important direction for future research
will be examining how well our theoretical results hold for other stimuli and kinds of memory biases.

One reason to explore serial reproduction with other stimuli is to provide further test of the pre-
dictions produced by our Bayesian analysis. To do so, we would ideally use stimuli for which memory
biases are already well established. For example, Feldman (2000) used a reconstruction task to inves-
tigate biases for boolean concepts, building on the work of Shepard, Hovland, and Jenkins (1961). In
this task, people were shown a division of a set of objects varying along binary dimensions into
two groups, and then asked to reconstruct the division from memory. The ease of reconstruction var-
ied with the complexity of the rule that described the division. We should expect the same memory
biases to manifest in serial reproduction, with the lower-complexity rules being more likely to survive
the process. Understanding how concepts change when passed from one person to another is partic-
ularly interesting in light of recent work exploring the stability of different kinds of religious concepts
under cultural transmission (Barrett & Nyhof, 2001; Boyer & Ramble, 2001).

Another reason to conduct experiments with other stimuli is that our results justify using serial
reproduction as a method for investigating memory biases. Since these biases have an effect each time
people reconstruct a stimulus from memory, Serial reproduction can magnify what might be small ef-
fects in the context of a standard memory task. Controlled experiments in serial reproduction might
thus be a valuable tool for exploring memory biases in a variety of domains. While this method has
been used heuristically in the past, our results provide it with a more rigorous justification, as well
as examples showing that the method works in both between- and within-subjects designs.

8.3. Conclusion

We have presented a Bayesian account of serial reproduction, and tested the basic predictions of
this account using four controlled laboratory experiments. The results of these experiments are con-
sistent with the predictions of our account, with serial reproduction converging to a distribution that
is influenced by the prior distribution established through training. Our analysis connects the biases
revealed by serial reproduction with the more general Bayesian strategy of combining prior knowl-
edge with noisy data to achieve higher accuracy. It also shows that serial reproduction can be analyzed
using Markov chains and first-order autoregressive models, providing the opportunity to draw on a
rich body of work on the dynamics and asymptotic behavior of such processes. These connections al-
low us to provide a formal justification for the idea that serial reproduction changes the information
being transmitted in a way that reflects the biases of the people transmitting it, establishing that this
result holds under several different characterizations of the processes involved in storage and recon-
struction from memory.
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