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ABSTRACT
Motor learning encompasses a wide range of phenomena, ranging from relatively low-level mech-
anisms for maintaining calibration of our movements, to making high-level cognitive decisions
about how to act in a novel situation. We survey the major existing approaches to characteriz-
ing motor learning at both the behavioral and neural level. In particular, we critically review two
long-standing paradigms used in motor learning research—adaptation and sequence learning.
We discuss the extent to which these paradigms can be considered models of motor skill acqui-
sition, defined as the incremental improvement in our ability to rapidly select and then precisely
execute appropriate actions, and conclude that they fall short of doing so. We then discuss two
classes of emerging research paradigms—learning of arbitrary visuomotor mappings de novo and
learning to execute movements with improved acuity—that more effectively address the acquisi-
tion of motor skill. Future work will be needed to determine the degree to which laboratory-based
studies of skill, as described in this review, will relate to true expertise, which is likely dependent
on the effects of practice on multiple cognitive processes that go beyond traditional sensorimotor
neural architecture. © 2019 American Physiological Society. Compr Physiol 9:613-663, 2019.

Didactic Synopsis
Major teaching points
� Motor learning can be defined as any experience-dependent

improvement in performance.

� Explicit and implicit processes both contribute to how we
learn new motor skills.

� Implicit adaptation serves to maintain motor performance
in a fluctuating environment through a sensory-prediction-
error-driven learning mechanism.

� Discrete sequence learning tasks reveal how we anticipate
temporal regularities in the environment, but are not likely
good models for skilled continuous sequential actions.

� Many skills, like riding a bicycle, cannot be assembled from
pre-existing skills and require building a de novo controller.

� Motor acuity—the quality of movement execution—can be
improved through practice.

� Implicit adaptation is dependent on the cerebellum.

� Explicit components of both adaptation and sequence tasks
have been shown to have pre-frontal and hippocampal
dependencies.

� Action selection is associated with interactions between the
basal ganglia and motor cortex.

� Motor acuity is accompanied by changes in primary and
premotor cortex, and cerebellum.

Introduction
Motor learning is a blanket term that encompasses a huge
diversity of phenomena, approaches, and disciplines. It can
apply to movements made by almost any animal species with
any effector in any task. It is of enormous practical relevance to
physical therapists, musicians, dancers, athletes, pilots, sports
coaches, and animal trainers to name but a few. Motor learning
is also of great theoretical and experimental interest to psy-
chologists and neuroscientists. From a cultural standpoint,
displays of motor skill arguably exert more fascination than
any other form of entertainment. For example, over 1 billion
people watched 22 men play with a spherical object in the
2018 World Cup Final, with more than half the world watch-
ing the tournament at some point. The reason for the world-
wide obsession with expertise in throwing, kicking, and hit-
ting balls, in hip hop dancing and ballet, and in boxing and
Kung Fu remains a mystery, but the answer almost certainly
relates in part to the years of practice required to perform at
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such a high level. We seem to appreciate and are impressed
by the feats of learning required to become expert at a sport
or with a musical instrument. How are such skills acquired?

The challenge at hand in reviewing the topic of motor
learning is to bring taxonomic and conceptual order to bear on
a daunting amount of seemingly loosely related phenomena
that involve broad regions of the brain. Additionally, acquiring
motor skills in the real world, such as becoming an expert ten-
nis player, can take thousands of hours. However, the major-
ity of research on motor learning focuses on more elementary
forms of learning, such as adapting pointing movements while
wearing displacing prisms. This adaptation process takes only
minutes to reach asymptote. Are there any common principles
connecting this and similarly simple forms of motor learning
to the attainment of expertise in complex skills? We suggest
that, although simple learning tasks may not enable us to
fully understand how complex, real-world skills are learned,
these tasks do provide foundational insights into components
of learning that are likely necessary (if not sufficient) to
account for how more impressive skills are learned (Fig. 1).
These learning components can be classified into one of three
primary stages along the motor planning pathway from stimu-
lus to action (473): formation of a movement goal (332), selec-
tion of the appropriate action to achieve that goal, and exe-
cution of the selected action. Each motor learning paradigm
likely drives changes at one or more of these stages, and thus

provides some insight into motor skill learning. Moreover,
due to their reasonably short duration, these tasks are more
amenable to rigorous examination in a laboratory setting. The
focus of this review will therefore be on studies of relatively
simple learning tasks in both human and non-human mod-
els with an emphasis on understanding how practice in the
context of these tasks leads to changes in behavior. Much
of motor learning research has attempted to identify learning
principles, test computational theories, and discover physio-
logical mechanisms (Fig. 2) supporting learning in these spe-
cific tasks. We nevertheless also hope to extract more general
insights pertaining to motor skill learning.

The scope of motor learning
It seems self-evident that the essence of motor learning is
about producing more effective movements. In most cases,
this amounts to the process of attaining motor skill. This
focus on movement is thus what distinguishes motor learning
from perceptual learning or the learning of abstract concepts
like the rules of Latin grammar or chess. It is likely, however,
that many common principles apply across these domains.
Although the boundaries around what constitutes motor learn-
ing are fuzzy, here we will exclude cases where a cognitive
operation is simply read out by the motor system, for exam-
ple moving a piece in a chess game. That said, it is important
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Figure 1 Motor learning tasks covered in this review and their relation to the pathway from goals to actions. Being skilled
in any motor task requires effective goal selection (i.e. where to move to or what to act on), effective action selection (i.e.
what movement can achieve the selected goal), and accurate and precise action execution. Improvements at any stage of
this pathway can be described as “motor learning”. Different motor-learning tasks stress improvement at different stages of
this pathway. For instance, tasks that involve discrete actions – either as part of a learned sequence or through a learned
association with discrete stimuli – require improved action selection and goal selection, but do not require any improvements
in action execution. Conversely, tasks that focus on learning at level of action execution (motor acuity paradigms) typically
do not involve any learning at the level of goal selection or action selection. Other motor learning tasks (e.g. continuous
sequence-production tasks, adaptation tasks, and tasks that require de novo learning of a new controller) likely engage
learning at multiple levels.
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Figure 2 Brain regions that contribute to motor learning. Numerous
regions throughout the brain have been identified as contributing in
some way to motor learning at the level of goal-setting, selection, or
execution. Discussion of the contributions of these regions to specific
categories of motor learning paradigms may be found within the cor-
responding sections of this review. Index to abbreviations: PFC (red):
prefrontal cortex; SMA (yellow): supplementary motor area; pre-SMA
(orange): presupplementary motor area; PMd (bright green): dorsal pre-
motor cortex; PMv (cyan): ventral premotor cortex; M1 (dark green):
primary motor cortex; S1 (cyan): primary somatosensory cortex;
PPC (blue): posterior parietal cortex; hippocampus (pink); cerebellum
(purple); basal ganglia (blue). Note that the colors used here are not
intended to relate to the colors used in Figure 1.

to emphasize, as we elaborate in the following section, that
cognition is very much part of motor learning when actions
need to be selected at the right time, in the right order, or in
the right combination.

Most obviously, motor skill involves precise execution of
movements. When a tennis player hits a topspin backhand, she
must activate the right muscles at exactly the right moments to
bring about the required movement with maximal precision.
However, there is more to motor skill than mere execution.
Typically, motor skill also involves rapid selection of the right
action in the right context. What makes a tennis player choose
to select a backhand over other potential shots? The answer
is that she picks up on numerous sensory cues that she has
learned to use to anticipate the oncoming trajectory of the ball
and selects the response that is likely to have the most success-
ful outcome given those cues. Making such decisions rapidly
and accurately is an integral part of any skill. We therefore
include acquiring the capacity to make these rapid decisions
within our definition of motor learning. Likewise, we also
consider the development of sight-reading in skilled musi-
cians (the rapid transformation of musical symbolic notation
into the correct actions) or the acquisition of touch-typing to
be examples of motor learning.

Besides improving skill, motor learning also encompasses
mechanisms for maintaining consistent performance in a fluc-
tuating environment. The human body is ever changing and

prone to fatigue, growth and injury, meaning that the same
motor commands will not always lead to the same movement
outcomes. It is not only the body that is subject to change but
also the environment. The dynamics of a tool might be altered
through use, or different weather conditions might affect the
trajectory of a ball. Adapting to all these ongoing changes to
maintain a previously attained level of performance is also an
important aspect of motor learning.

To summarize these various considerations, we adopt a
two-part operational definition of motor learning: (i) skill
acquisition—the processes by which an individual acquires
the ability to rapidly identify an appropriate movement goal
given a particular task context, select the correct action given
a sensory stimulus and/or the current state of the body and the
world, and execute that action with accuracy and precision;
(ii) skill maintenance—the ability to maintain performance
levels of existing skills under changing conditions. These two
aspects of motor learning are each important in their own right,
and they likely share overlapping neural circuitry. That said, it
is also clear that the brain possesses dedicated mechanisms for
skill maintenance, as we discuss in the section on adaptation.

What would not be considered motor learning under this
definition? This depends on the nature of the skill being
acquired. Many skills can be extremely complex and require
practice over thousands of hours. In these cases, the term
“expertise” becomes more appropriate than skill. Typically,
expertise in complex motor tasks requires cognitive opera-
tions that go beyond sensorimotor mappings. For example,
an expert tennis player may notice that her opponent is way
behind the baseline and their weight is moving backward, and
therefore decide to play a drop shot because she knows her
opponent will not be able to get to the ball in time. An expe-
rienced musician may decide to play part of a composition at
a slower tempo because he knows it will have an increased
emotional effect on the audience. For the purposes of this
review, we consider these two examples to fall too far on the
cognitive side of tennis and musical expertise, respectively, to
be considered examples of motor skill. Consequently, acquir-
ing these aspects of expertise falls beyond the definition of
motor learning. However, any real-world motor task neces-
sarily entails both cognitive and movement components, and
the boundary between them is often subjective.

Although we have emphasized the importance of cogni-
tive operations in expert performance, we do not want to give
the impression that cognitive operations only contribute to
expertise. Rather, cognitive involvement appears to be impor-
tant for acquiring almost any motor skill, even elementary
ones. Thus, even though we have decided to largely sidestep
the topic of motor expertise, the role of cognition will remain
prominent throughout this review.

Motor skill learning versus implicit learning
It is often considered that motor learning is an implicit
phenomenon, lacking any explicit cognitive contribution—
contrary to our claim that explicit processes play an important
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role in motor learning. Implicit learning has been tied to two
separate notions. One is that “implicit” implies being uncon-
scious or unaware (though awareness is notoriously challeng-
ing to measure (156, 392)—for example, what someone is
aware of might not be apparent because the wrong ques-
tion was asked or it cannot be easily verbalized). The second
notion is that some process is considered to be implicit when
it is non-intentional or automatic. It could be argued that both
of these properties apply to an overlearned motor skill—one
can ride a bike without needing to attend to or be aware of
how we are moving our hands and feet, and the movements
required to stop, start, steer, and stabilize could plausibly be
described as automatic. However, these attributes should not
be extrapolated to the process of motor learning. Even if the
endpoint of learning is an implicit, procedural skill, the pro-
cess of arriving at that skill is, in most cases, a richly cognitive
enterprise, building on instruction, imitation, and moments
of insight.

We suggest that the misconception that motor learning is
purely or mainly an implicit process can be traced back to
the classic findings in the amnesic patient HM (416). Specif-
ically, HM was a patient who developed a profound antero-
grade amnesia after undergoing a bilateral temporal lobec-
tomy for intractable epilepsy. After this operation, he would
forget events within minutes of their occurrence. In a now
classic experiment, the neuropsychologist Brenda Milner had
HM perform a mirror-drawing task in which he had to trace
the perimeter of a star shape with a pencil while viewing it
through a mirror. The critical finding was that HM showed
improvement in the mirror drawing task across 3 days even
though he had no recollection, or even a sense of familiar-
ity, of the task when he re-encountered it on days 2 and 3
(296). Since that experiment, it has largely been assumed that
motor skill learning is dependent solely on procedural mem-
ory systems and not declarative memory systems. Indeed, in
a famous tree diagram outlining the taxonomy of long-term
memory systems, skills and habits appear on the procedu-
ral side of the tree (413). Subsequent reviews then equated
procedural memory with implicit learning (414), under the
assumption that, if a task can ultimately be performed with-
out awareness, then the learning must have been implicit and
was at no point dependent on explicit (declarative) processes.
The study of motor learning in psychology and neuroscience
has subsequently emphasized implicit learning, through the
use of paradigms such as the serial reaction time task (SRTT)
and adaptation tasks.

Where is the fallacy in the logic that motor learning is
an implicit process? For one, the HM result demonstrates
that declarative memory was not necessary to learn the mirror
drawing skill across days, but it does not rule out that HM
used declarative processes within each session to perform
the task. Indeed, HM had to follow instructions each day
about what to do in the task. More recent work has reinforced
this idea, showing that the combination of instruction and
implicit learning is necessary for amnesic patients to learn
novel tools (364). A second reason is that explicit strategies

and knowledge can be automatized through practice (15,152,
264) and thus become implicit. At least one of the authors of
this review (JWK) can no longer recall his ATM pin number
but has no problem typing it in when placed in front of the
keypad. Something similar could conceivably have happened
to HM within or between training sessions.

Thus, although many aspects of motor skills that we learn
can eventually become implicit this does not mean they were
initially learned implicitly. A recurring theme in this review
is that explicit, cognitive processes contribute to almost all
forms of motor learning. In many instances, particularly early
in learning, explicit processes may dominate learning. As we
shall discuss, even in paradigms devised to study motor learn-
ing as an implicit phenomenon (e.g., adaptation and SRTT
tasks), explicit processes persistently intrude and often turn
out to be in the driving seat. The notion of multiple, interacting
memory systems has long influenced notions of motor skill
learning (107, 461). Though such theories have been muted
by the influence of the findings in HM, interactions between
implicit and explicit memory and learning processes have
re-emerged as a prominent theme in motor learning.

Adaptation
Motor adaptation refers to a particular type of behavioral
change that involves adjusting how an already well-practiced
action is executed to maintain performance in response to a
change in the environment or the body, either by selecting
an alternative well-practiced action or modifying how the
current action is executed. In either case, the goal of the
action (e.g., reach to a target) remains the same. Adaptation
is thus distinguishable from de novo motor learning; under
the latter, a new motor controller (that is, some network or
process that generates motor output given the state of the body
and current goals) is formed from scratch rather than derived
from existing ones (we discuss de novo learning in a later
section). For example, if an experienced tennis player picks
up a new, heavier tennis racket, she is likely to adjust her
existing controller, rather than assemble an entirely new one.

Aside from adjusting to a different tool, there are many
other reasons why we might need to recalibrate our actions
on a continuing basis. First, the dynamics of the environ-
ment are inherently variable. The dynamics of a tennis ball
may be affected by changes in the wind, humidity etc. The
body itself is also liable to change. A muscle can strengthen
or weaken through use or with ageing. The properties of a
muscle also change over very short timescales due to fatigue
(99, 119). Injuries (e.g., pulling a muscle) might render some
actions temporarily unavailable. In all these cases, the same
motor commands issued by the brain that at one time may
have led to perfect performance will now fail to do so, and
therefore our existing motor controllers must be adapted to
maintain performance. The need to maintain our skills in an
ever-changing environment is evidently so pervasive that the
motor system appears to possess a dedicated mechanism for
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recalibrating our actions. The cerebellum plays a critical role
in this mechanism.

Motor adaptation has been widely studied ever since
Helmholtz’s nineteenth-century experiments, in which partic-
ipants wore prism goggles that shifted the visual field (444).
Prism goggles provide a vivid illustration of the adaptation
phenomenon, but their use in basic science has largely been
replaced by other paradigms that afford more precise and flex-
ible control over the types of perturbations a participant expe-
riences. Extensive study of various adaptation paradigms has
allowed the brain’s mechanisms for recalibration to be charac-
terized in considerable detail. It has become clear, as we shall
discuss, that although cerebellum-dependent recalibration is
an important mechanism supporting adaptation, in most cases
exposure to a perturbation also engages additional learning
mechanisms, such as the use of explicit cognitive strategies,
which exhibit different properties from cerebellum-dependent
learning. In this section, the term “adaptation” will refer to the
process of reducing error in adaptation paradigms, that is, it
is agnostic to underlying learning mechanisms. It is neverthe-
less unavoidable that this will lead to confusion on occasion,
especially when giving a historical account, because many of
the earlier studies in this area assumed a single mechanism
was responsible for error reduction in adaptation paradigms.

Motor adaptation paradigms
Numerous approaches have been used to elicit adaptation in
laboratory tasks. One common approach is to alter the dynam-
ics of the body during movement. In reaching movements, for
instance, this is often achieved by having the participants hold
a robotic arm that applies forces to the hand during point-
to-point reaching movements. The imposed forces usually
depend on the position and/or velocity of the hand to create a
“force field” in which the hand must move (389). For exam-
ple, in a “viscous curl field,” the imposed force is proportional
to the current speed of the hand, but is directed orthogonally
to the direction of movement. A similar velocity-dependent
force-field perturbation can arise, even without the need for
a robotic arm, when participants make reaching movements
while seated on a rotating platform (255). Other dynamic per-
turbations can involve the addition of static loads on different
positions relative to the arm’s center of mass to alter interseg-
mental limb dynamics (250, 369). In all cases above, pertur-
bations initially lead to movement errors but, through expe-
rience, participants learn to generate forces that can counter
the imposed loads to regain their baseline levels of perfor-
mance (Fig. 3).

Another popular approach is to impose a novel mapping
between motion of an effector and the corresponding visual
feedback. As with a force field, this initially results in unex-
pected errors that require the motor system to adjust future
movements. Historically, such visuomotor perturbations have
been accomplished by the use of prism glasses, which can dis-
place the visual field vertically or laterally (444). Computer-
based setups allow for much more direct and flexible control

(A) (B)

(C) (D)

(E) (F)

Figure 3 Force-field adaptation and aftereffects. This figure illustrates
behavior in a typical force-field adaptation task (408). In this study, par-
ticipants held a robotic manipulandum, illustrated in panel A, and made
planar reaching movements toward eight different targets spaced 45◦

apart. After a baseline, unperturbed period, the manipulandum applied
a force proportional to the speed of the hand, and directed perpendic-
ularly to the direction of movement, as illustrated in panel B. Whereas
baseline, unperturbed movements were relatively straight (C), the intro-
duction of the force field resulted in movement errors in the direction of
the force field (D). After prolonged training, participants adapted to the
force field, resulting in straight trajectories (panel E). Interspersed with
the training trials were occasional “catch” trials, in which the force-field
was removed, revealing the aftereffects of adaptation, with movements
exhibiting errors in the opposite direction to the perturbation as shown
in panel F: note how the direction of errors for each target in F is oppo-
site to those experienced in D (and opposite to the direction of the
perturbation in B). Panel A is adapted, with permission, from (134);
panels C to F are adapted, with permission, from (408).

of the relationship between hand position and the position of
an on-screen cursor. The most commonly used visuomotor
perturbation is visuomotor rotation (VMR) (253), in which
cursor feedback is rotated by an angle (often around 30◦ to
45◦, though it can be larger or smaller) about the starting
position of the movement (Fig. 4). Another commonly used
type of perturbation is a change in the visuomotor gain, by
either amplifying or reducing the amount the cursor moves
for a given displacement of the hand, just like changing the
sensitivity of a mouse cursor (253, 333, 341).
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Figure 4 Visuomotor rotation adaptation. In visuomotor adaptation studies, participants typically make reaching
movements without direct vision of their hand but instead observe the movement of a cursor which represents the
location of their hand. During baseline, unperturbed movement, the cursor follows the hand position (veridical visual
feedback, A). In B, a visuomotor rotation makes the cursor move in a direction 30◦ counterclockwise relative to hand
motion, resulting in error. After learning, the hand moves at a 30◦ angle relative to the target direction bringing the
cursor directly to the target (C). Removal of the rotation leads to aftereffects (D); moving along the adapted hand
direction now leads to a 30◦ clockwise error.

Interestingly, different types of perturbations such as the
above appear to be learned independently, likely because
the recalibration process can operate on different kinds of
error. For example, learning of novel dynamics can take place
independently of learning of novel kinematics (250). Patient
studies provide further evidence for this dissociation between
adaptation to kinematic and dynamic perturbations. Rabe and
colleagues examined deficits of patients with cerebellar dam-
age when performing these two types of task (347) and found
no correlation between them. As these patients had lesions
in various parts of the cerebellum, this finding points toward
the idea that different variables (in this case types of error)
are processed in a similar way but by different parts of the
cerebellum.

In addition to force field perturbations and visuomotor
perturbations to reaching movements, there are several other
commonly used motor adaptation paradigms. Adaptation can
occur in relatively simple behaviors, such as altering the gain
of the vestibulo-ocular reflex (216, 359). Saccadic eye move-
ments can be adapted by displacing the target during the move-
ment to induce an adaptive change in the gain or direction of
the saccade (80,237,289,476). This target-jump approach can
also be used for reaching movements (269, 452). Adaptation
of gait can be induced using a split-belt treadmill that can
impose different speeds on each leg, which results in an adap-
tive adjustment of gait parameters such as step length or step
symmetry to overcome asymmetric walking patterns induced
by the speed mismatches (205, 271, 282, 303). Adaptation of
speech production can be elicited by distorting auditory feed-
back of generated speech so that it sounds different (183,331).
Despite the different modalities employed in these paradigms,
the goal of these experiments is similar: to examine how pre-
viously existing motor controllers are adjusted to maintain
performance in the context of errors induced by a perturbation.

Basic properties of behavior in adaptation
paradigms
Learning from errors

When a previously unseen perturbation is applied to move-
ment, participants do not counter the error in a single trial.
Rather, actions are adjusted little by little over a number of
trials. Typically, the extent of correction from one trial to the
next depends on error size. On the first trial after a large per-
turbation is introduced, the movement errors are large and
participants generate a relatively larger correction. As learn-
ing proceeds, the errors get smaller and, consequently, so
do the corrections. Assuming the perturbation applied is the
same for each trial, this process results in the characteris-
tic exponential time-course of error reduction seen almost
universally in adaptation paradigms. In cases where the per-
turbation randomly varies from one trial to the next, the
motor system adapts to the average value of the perturbation
(147, 190, 374, 419).

The observation that corrections generally scale with the
experienced error suggests that learning can be described in
terms of a rate—the fraction of the error corrected from one
trial to the next—that is invariant across different error sizes.
For example, with a fixed learning rate of 0.5, a 1 degree error
leads to an additional half a degree of adaptation in the next
trial, while a 10 degree error will lead to a 5 degree adaptation.
For relatively small error magnitudes this proportionality is
largely true—people do correct for a fixed fraction of their
error. However, it seems that the adaptive responses to per-
turbations tend to saturate as the size of errors becomes large
(273, 447). This appears to be true regardless of the nature of
the perturbation. Consequently, learning is inconsistent with
a constant “rate” parameter, but instead could be described
in terms of a learning rule in which the rate (or “sensitivity”)
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decreases with increasing error size. Alternatively, it has been
suggested that declining error sensitivity may not be the best
way to view this saturation; instead, it may reflect a limitation
in the amount of error that can be corrected from one trial to
the next (228).

Regardless of the nature of the learning rate, why doesn’t
the motor system correct the entirety of the error in a sin-
gle step? One might assume that this is due to limitations
in underlying plasticity mechanisms required to implement
the update. However, this explanation seems implausible. If a
large correction can be generated for large errors, why can’t a
small error be corrected completely? Furthermore, difficulty
in forming a new motor plan could plausibly apply in the
case of force field learning, but not for visuomotor rotation,
where the adapted movement to a visuomotor rotation is sim-
ply a regular reach aimed in a different direction from the
displayed target.

An alternative explanation is that the incremental nature
of adaptation reflects a rational response to the observed error.
Noise in issuing the desired motor command, and uncertainty
associated with observing the error mean that not all of the
perceived error should necessarily be corrected. In the extreme
case, if the error were solely due to noise, it would be inap-
propriate to correct for it at all. Hence, incomplete learn-
ing from one trial to the next could be a consequence of
uncertainty about what compensation would be required on
the next trial. This view formally corresponds to a Bayesian
perspective of learning (244), according to which adaptation
is essentially a problem of estimating the properties of the
imposed perturbation given both the noise in the motor sys-
tem and the likelihood that the environment itself may be
changing.

Retention and De-adaptation

We have described motor adaptation as a process that occurs
by adjusting an existing controller to maintain performance
levels under new circumstances, rather than creating a brand
new controller. This assertion stems from a ubiquitous sig-
nature of motor adaptation: the presence of aftereffects after
the perturbation is removed. For example, if a participant has
learned to produce a leftward force to counter a rightward
force-field, abruptly removing the force-field on the next trial
will cause the hand to deviate toward the left, as the partici-
pant generated a leftward force in anticipation of a rightward
perturbation that is no longer there. Importantly, these after-
effects can be involuntary. They occur even when the partic-
ipant is fully aware that the perturbation has been removed
(235, 353, 421). Thus adaptation to a perturbation is, at least
in part, an implicit process.

However, this aftereffect appears to be inherently tran-
sient. The adapted state of the motor system rapidly reverts
to baseline on subsequent trials in the absence of a pertur-
bation (146, 190, 232). Extinguishing adaptation in this way
is commonly referred to as washout and occurs quite rapidly
(Fig. 5)—usually slightly faster than the rate of adaptation

to the perturbation in the first place. This washout is in part
driven by the same error-based process that operates during
acquisition, except that the observed errors are now in the
opposite direction. However, washout is also abetted by an
additional tendency for behavior to revert or “decay” toward
baseline.

This decay of adaptation can be most clearly seen when
participants continue to move but are not provided with mean-
ingful observed errors. This can be accomplished in one of
two ways. First, by removal of relevant sensory feedback—for
example, by hiding the cursor during visuomotor adaptation
(117, 232). An alternative approach is to manipulate sensory
feedback so that experienced errors are minimized and perfor-
mance appears essentially perfect regardless of the true motor
output. This approach is often referred to as an “error clamp,”
since observed errors are “clamped” to be zero. In visuomo-
tor adaptation, an error clamp can be accomplished by simply
projecting visual feedback of the hand position onto a straight
line passing through the target (232,437). In force-field adap-
tation, an error clamp can be achieved by mechanically
constraining the hand to move along a straight line toward
the target (49,375,436). In either case—whether sensory feed-
back is removed altogether or manipulated to give the impres-
sion of minimal error—there is a similar gradual, roughly
exponential decline in adapted state over time (Fig. 5).

Besides decaying when moving in the absence of errors,
motor adaptation can also decay passively with the passage
of time in the absence of any movement (70, 146, 232, 403).
For example, simply waiting for about 12 min (approximately
the time required to complete the washout block) reduced the
extent of compensation by roughly 50% (232). Adaptation
does not, however, appear to decay completely with time, as
discussed in more detail in the later section on temporally
stable versus temporally labile adaptation.

The reason for the decay of adaptation remains unclear.
However, the fact that adaptation does spontaneously and
rapidly revert to baseline clearly demonstrates that it is a tem-
porary adjustment to the existing baseline controller, rather
than the formation of a new controller. The transient and
reversible character of adaptation provides a stark contrast to
motor skill learning, which is characterized by slow learning
over months or even years but tends to be long-lasting. This
difference casts serious doubt on whether adaptation can serve
as a good model for motor skill learning.

It is important to note, however, that although adaptation
seems to be short-lived, under certain conditions it can exert
a longer-term influence on behavior. In the absence of active
washout, some aftereffects of adaptation have been observed
to persist, albeit fractionally, over 24 hours, in visuomotor
(104, 249, 250, 459), force-field (70, 215), and saccadic adap-
tation (7). Furthermore, even when such aftereffects do not
occur or have disappeared, the memory of the adapted state
does not seem to be altogether eradicated; when participants
experience the same perturbation a second time, they adapt to
it faster (a phenomenon typically referred to as savings). The
existence of savings demonstrates that there is a long-term
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Figure 5 Forms of deadaptation. Panels are taken from a study (232) that trained participants on a 30◦ visuomotor rotation and then
subjected them to different modes of deadaptation. A shows the experimental apparatus used. B illustrates the training schedule and
the four different modes of deadaptation employed: clamped feedback in red (participants’ movement is projected onto a straight line
connecting the start position and the target, leading to the impression of zero error); no feedback in green; washout in blue (participants
receive veridical feedback); and time in black (participants do nothing for about 12 minutes—the time it normally takes to complete one
of the other deadaptation blocks). The results, shown in C, illustrate considerably faster deadaptation in the washout condition compared
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washout deadapts at a significantly faster rate. This is not surprising: the clamp and no-feedback conditions remove error feedback, letting
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memory associated with the initial episode of adaptation. We
will discuss savings in much greater detail in the later section
on savings.

Generalization of motor adaptation

The degree to which motor learning can be expressed in con-
ditions different than those in which it originally occurred
is commonly referred to as transfer or generalization. In the
case of motor skill acquisition, for instance, it is important

that skill learning can generalize from practice conditions to
performance conditions. Studying generalization of learning
can provide insights into the neural representations underly-
ing learning: if learning generalizes from one condition to
another, this hints at a shared neural representation for the
two conditions (For a review, see (385)).

In the case of adaptation, generalization is typically
assessed by comparing the extent of adaptation in the trained
movement direction to that in other, untrained directions in the
workspace. The extent of generalization to different directions
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appears to depend on the type of perturbation applied, but this
could be because of the contamination effects by other learn-
ing processes in adaptation paradigms (we discuss this in more
detail later in the section on interference). Typically, the after-
effects of motor adaptation are fairly local to the trained direc-
tion, corresponding to a narrow generalization pattern that
falls off as a function of angular distance away from the trained
direction, reaching zero or close to zero at around 45◦ to 60◦

away from the trained direction (48,57,85,253,429); this pat-
tern of generalization is most frequently observed following
adaptation to force-fields and visuomotor rotations. In con-
trast, gain perturbations induce a wider generalization pattern
that tends to be flat across the whole workspace of differ-
ent untrained movement directions (253,341). However, gain
generalization patterns still exhibit a peak around the trained
direction (333). It is possible to simultaneously train different
gains on different targets across the workspace, suggesting
that this generalization pattern is flexible (333).

It is also interesting to consider how learning generalizes
across different limb postures. This can reveal whether the
underlying learning is represented in terms of an extrinsic
coordinate frame (i.e., movements of the cursor in space) or
an intrinsic coordinate frame (i.e., changes in joint angles).
Changing the arm posture at the start of movement can disso-
ciate these two scenarios since the same extrinsic movements
(cursor displacements) now correspond to different intrin-
sic movements (joint angle displacements). Such approaches
have largely suggested that visuomotor adaptation occurs in
an extrinsic coordinate frame (253), while force field adapta-
tion is more intrinsic (388,389). Recent studies have, however,
found evidence for the concurrent involvement of multiple
reference frames—intrinsic and extrinsic, as above, but also
object-centered—in adaptation to visuomotor and force per-
turbations (35, 48), suggesting a mixed representation that is
not yet clearly understood.

Besides movement direction, generalization of motor
adaptation has also been examined across different perturba-
tion types (404), different viewing conditions (61), different
movement speeds (213) or amplitudes (135, 281), and differ-
ent effectors (36, 69, 155, 214, 252, 425). As stated above for
gain generalization, however, some caution is required as the
degree to which generalization reflects properties of implicit
recalibration versus other learning processes is not always
easy to experimentally disambiguate. Indeed, generalization
across contexts is one area where cognitive elements are likely
to play a critical role.

State-space models of adaptation

The properties of adaptation described above occur in almost
any adaptation paradigm, and are largely consistent across dif-
ferent participants. This regularity has prompted theorists to
derive a mathematical characterization of behavior in adapta-
tion paradigms. Basic properties of adaptation are remarkably
well described by a relatively simple class of models, termed
state-space models (60, 85, 429).

In the simplest version of such a model, the trial-to-trial
change in behavior during adaptation can be captured through
the following equation:

x(k) = Ax (k − 1) − Be (k − 1) , (1)

where x(k) represents the extent of adaptation on trial k. For
example, x represents the direction of a reaching movement
in a visuomotor rotation paradigm or the amount of force
generated perpendicular to the direction of movement in a
force-field paradigm. We assume here that behavior at base-
line corresponds to setting x= 0, that is, no adaptation. The
term e(k-1) represents the error of the movement on the pre-
vious trial (k-1), while the parameter B represents the learn-
ing rate (or error sensitivity)—the proportion of an observed
error that will be compensated for on the next trial. B has
been estimated from data to typically be in the range of 0.1
to 0.3 (134, 407). This equation thus encapsulates the idea of
a fixed sensitivity to error, and predicts exponential learning
curves when a fixed perturbation is imposed. The final param-
eter, A, is a retention factor that represents the tendency for
the applied compensation, x, to decay back to baseline levels
(x= 0) with each movement. Setting A= 1 corresponds to per-
fect retention, while values of A close to but less than 1 imply
a partial decline in the adapted response toward baseline from
one trial to the next, as is known to occur when errors are
artificially clamped at zero (232, 375, 436). Including A in
this equation also accounts for the fact that deadaptation dur-
ing simple decay (e.g., where visual feedback is removed) is
slower than active washout when the perturbation is removed
(232). It also accounts for the well-established fact that adap-
tation never quite reaches full compensation for the perturba-
tion (240, 437). Specifically, late in adaptation the opposing
drives of learning from errors (B) and decay of the adapted
response toward baseline (A) will reach an equilibrium at a
level somewhere short of perfect compensation.

Equation 1 illustrates a simple instance of a state-space
model (60, 85, 429). The basic model presented here can be
extended in various ways, for instance to include compen-
sation in different directions (85), and to include multiple
components underlying the adaptive response (243, 407).

It should be emphasized, however, that these models
are not intended to provide a mechanistic explanation of
adaptation—they do not explain why adaptation has the prop-
erties it does. They explain neither why compensation for a
perturbation decays, nor why people learn at the rate they
do. However, these models do encapsulate a set of simple
assumptions about how learning might occur on a single-trial
timescale, and allow us to predict behavior in response to sus-
tained or fluctuating perturbations over many trials. At this,
they appear to do a remarkably good job (85, 429, 437).

Bayesian theories of learning provide a potential expla-
nation as to why state-space models have proven so effective.
As we described earlier, a longstanding theory in motor adap-
tation holds that partial learning from one trial to the next
arises due to uncertainty about what compensation would be
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required on the next trial (244). This theory holds that adap-
tation is essentially a problem of estimating the properties
of the imposed perturbation, given uncertainty about sensory
feedback and the state of the world. Mathematically, under
certain assumptions (that the noise/variability is Gaussian
in both cases), this Bayesian estimation framework becomes
equivalent to a Kalman filter (219)—a common algorithm for
optimally tracking dynamic states under noisy observations—
which is almost identical to a state-space model.

The Bayesian perspective generates a number of addi-
tional insights besides simply accounting for learning rates.
For example, if the uncertainty associated with sensory input
increases, the motor system should assume that observed
errors are the result of this higher sensory noise (to which
adaptation would be inappropriate) instead of actual changes
in the external environment (to which adaptation would be
necessary). As a result, the motor system would adapt less
to a given error, reducing its learning rate. This predic-
tion has been validated experimentally (53, 447). This basic
Bayesian approach has also been extended to include multiple
timescales of adaptation (243), and learning across multiple
contexts (252) and in multiple modalities (148). Bayesian the-
ories have also been proposed to explain why error sensitivity
declines for larger errors: if one assumes that very large errors
are likely to be one-off outliers that are unlikely to recur, then
it makes sense to correct relatively less for them compared
to smaller errors, which are more likely to reflect a persistent
change (447).

Multiple components of motor adaptation
The simple theory presented above frames adaptation as a
single process that can be characterized by a simple learning

rule. This theory can capture many of the salient phenomena
present in adaptation paradigms. However, numerous lines of
evidence now demonstrate that adaptation is in fact supported
by multiple, qualitatively distinct processes that operate in
parallel (193). These observations have revealed that there
is far more to how participants compensate for an imposed
perturbation than just implicit recalibration of a pre-existing
motor controller. Instead, multiple, qualitatively different pro-
cesses occur during adaptation tasks; for example, processes
driven by explicit, cognitive strategies. When it comes to
studying implicit recalibration, these other processes can be a
contaminant. At the same time, however, these additional pro-
cesses likely reflect the involvement of similar mechanisms
to those responsible for more general motor skill learning.

The first clue that multiple processes contribute to learn-
ing in adaptation paradigms is that close inspection of learn-
ing curves typically reveals two distinct time constants: fast
initial learning, followed by slower, more gradual improve-
ments later on (e.g., the red curves on Fig. 6). This two-
timescale learning curve can be modeled by extending the
state space model above to include two underlying compo-
nents of learning: a “fast” process that has a high learning
rate but decays rapidly, and a “slow” process that learns more
slowly but has greater retention (407). The total compensation
in a given trial is simply the sum of these two components.
Indeed, a multiple-component model is capable of fitting a
host of behavioral phenomena such as spontaneous recovery,
in which, after washing out the adapted response, some frac-
tion of that learned behavior becomes reinstated. The presence
of two learning components can account for this phenomenon
in situations where the sum of the two states, neither of which
is at baseline, is nevertheless equal to zero (101, 407). A
two-component model can also account for savings in certain
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circumstances (407) (though subsequent work (487) showed
that the two-state model cannot account for savings in most
situations of interest), as well as other phenomena such as
anterograde interference (215, 405), and the effect of inter-
trial intervals on learning (403).

However, it is unlikely that the underlying components
that contribute to learning in adaptation paradigms only differ
in terms of their learning and retention rates, as the two-
state model suggests. The multiple components of learning
instead correspond to entirely distinct learning processes that
are simultaneously brought to bear on the same problem.
For example, it has since been suggested that the fast and
slow processes can be equated to distinct explicit and implicit
learning processes, respectively (286). Below we will identify
and describe the nature of these component processes that
contribute to performance in adaptation paradigms.

Explicit versus implicit adaptation

The most prominent way in which the components of adapta-
tion have been dissociated is in terms of how much they rely on
overt cognitive processes. This was first recognized in prism
adaptation, where it was noted that aftereffects after removal
of the prisms never fully match the imposed perturbation. It

was suggested that participants must therefore compensate
for prism-induced perturbations, in part, through a deliber-
ate strategy that can easily be disengaged when the prisms
are removed (353). This explicit mechanism has been shown
to have considerable influence in adaptation paradigms, and
may even dominate learning in many circumstances (422).
Providing instructions about how to deal with a perturbation
results in faster adaptation for both visuomotor rotation (33)
and split-belt treadmill perturbations (270). Moreover, when a
strategy is not provided, participants who are able to describe
the preceding perturbation accurately at the end of visuomotor
adaptation often prove to have adapted better than participants
whose descriptions are vague or incorrect (451).

Visuomotor rotation tasks are particularly amenable to
studying the implicit and explicit components of learning
because an explicit strategy presumably involves simply aim-
ing toward a different location than the target. This was first
addressed in an experiment by Mazzoni and Krakauer (285)
(Fig. 7B). After two trials of experience with a 45◦ rotation,
participants were told the exact nature of the perturbation and
that they could counter it by aiming to a neighboring target
45◦ in the opposite direction. Following these instructions,
subjects were immediately able to move the cursor directly
toward the intended target. However, as they continued to aim
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Figure 7 Implicit adaptation is involuntary and driven by sensory prediction error. (A) In this study (276), participants threw darts while
looking through prisms which displaced their visual field, leading to errors. This panel shows data from one participant. After donning prism
glasses (on trial 13) this particular subject utilized an aiming strategy which led to almost eliminating the error in the next trial. However,
continuing to use the same strategy led to involuntary adaptation: while the strategy eliminated task error, sensory prediction errors continued
to (involuntarily) recalibrate their throwing, as witnessed by the increasing error after trial 13. On trial 19, the subject was instructed to stop
using their strategy and aim directly at the target. Figure re-plotted from (276); used by permission of Oxford University Press. (B) Mazzoni
and Krakauer trained participants in a 45◦ visuomotor rotation task (285). Top panel: Experiencing the rotation for two movements (II) led to
an increase of about 45◦ in directional error (y-axis). At that point, participants in this group were briefed on the nature of the perturbation
and provided with a strategy to counter it: aim to a target 45◦ away on the other direction. This led to an immediate reduction in error close
to zero (beginning of III). However, as participants continued to use this strategy, they began to display errors in the opposite direction due
to involuntary adaptation as in A. When the participants were instructed to stop using the strategy and instead aim at the intended target
(IV), they experienced errors that were significantly smaller than the 45◦ error that would be expected had there been no recalibration.
After the perturbation was removed, participants displayed persistent, slowly decaying aftereffects (V), a hallmark of implicit adaptation.
Bottom panel: participants in a further group were not provided with a strategy, but still displayed similar levels of implicit adaptation and
aftereffects as the first group.
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at the neighboring target, their performance worsened as their
movements began to drift away from the target, exacerbat-
ing their initial instructed compensation for the rotation. The
interpretation is that although participants experienced zero
task error due to their use of the instructed strategy, the mis-
match between the intended direction of the unobserved hand
movement and the observed direction of the cursor move-
ment (which represents the hand), that is, sensory prediction
error, continued to drive implicit recalibration. This result
vividly illustrates the existence of implicit adaptation and its
involuntary nature. The same drift phenomenon has also been
observed when participants spontaneously adopt an aiming
strategy while wearing prism goggles (276) (Fig. 7) and has
since been widely reproduced (382, 421).

Many experiments have since extended the original Maz-
zoni and Krakauer result. In particular, it has been shown
that, even when participants are not provided with a re-aiming
strategy, they nevertheless seem to adopt one spontaneously
(33, 287, 301). One way to measure the extent of re-aiming
is to simply ask participants to disengage any strategy they
may be applying and instead try to move directly to the target
(33,301,320,450). An alternative approach is to have partici-
pants report where they were aiming prior to each movement
(424). The reported aiming direction relative to the target pro-
vides a measure of explicit adaptation, whereas the direction
of hand movement relative to the aiming direction provides
a measure of implicit adaptation. This direct-report approach
has the added benefit of yielding a trial-by-trial decompo-
sition of learning into implicit and explicit components (for
example, see Fig. 6B). Tracking these contributions through-
out the course of learning reveals that explicit contributions
are larger in amplitude early in learning, and then persist
as smaller adjustments to ongoing implicit learning (424).
This illustrates the flexibility of the explicit learning compo-
nent, with participants able to adjust their re-aiming strategies
depending on the extent of adaptation by the implicit system
(421). The explicit compensation process has been likened
to mental rotation (13, 105, 288). For instance, Anguera and
colleagues found that performance on a mental rotation task
correlated with the rate of early, but not late, learning of a
visuomotor rotation; moreover, brain activity during a men-
tal rotation task—mapped using fMRI—was similar to brain
activity during early, but not late adaptation (13).

A perhaps surprising finding emerging from this line of
work is that the maximum amount of implicit adaptation to
a visuomotor rotation is only around 15◦ to 25◦, and seems
to be independent of the perturbation size (44, 302). Thus,
adaptation to anything more than a modest perturbation will
require explicit contributions to achieve full compensation.

Another, related way to decompose learning into multi-
ple components is to limit reaction times. Fernandez-Ruiz
and colleagues (105) found that limiting reaction time dur-
ing adaptation to a visuomotor rotation significantly slowed
learning, and suggested that this was due to short preparation
times prohibiting the use of cognitive strategies. Haith and

colleagues (149) extended this idea by limiting preparation
time in only a subset of trials. Although participants adapted
normally, they were only able to express a fraction of their
learning in trials in which preparation time was limited, at
least during early adaptation (Fig. 6C). Thus, limiting prepa-
ration time isolates a single learning process, which is likely
related to the implicit process measured through explicit aim-
ing reports (259).

One discrepancy between these two approaches (limiting
preparation time versus gathering explicit aiming reports) is
that, after enough trials under the perturbation, participants
can compensate almost perfectly for the perturbation even
when preparation time is restricted (149) whereas, with aim-
ing reports, implicit learning never fully accounts for the net
adapted behavior (424). A potential reconciliation is that the
specifics of the task itself might promote one type of adapta-
tion over the other. For example, participants are more likely
to utilize explicit adaptation when they are given explicit
instructions, when the visuomotor perturbation is introduced
abruptly rather than gradually, when cursor feedback is lim-
ited to the endpoint (rather than provided continuously during
the movement), and when cues and markers facilitating reaim-
ing are present in the workspace. Alternatively, it may become
possible through repetition and/or practice, to implement a
reaiming strategy more automatically, avoiding the need for
time-consuming computations each time (194). The nature of
compensation and ability to compensate at low preparation
times also appears to depend on the number of targets in the
task (288).

Adaptive changes driven by sensory-prediction
errors versus task errors and reward prediction
errors

In principle, learning in adaptation tasks could be driven by a
number of different error signals. Most obvious is task error,
that is, the extent to which the actual movement outcome
deviates from the movement goal. As we have already dis-
cussed, implicit adaptation is not in fact driven by task error
but is instead driven by sensory prediction errors. To recap,
this has been clearly demonstrated in experiments in which
participants are provided instructions as to how to counter the
perturbation, ensuring they achieve zero task error, while still
experiencing sensory prediction errors (285, 421). An alter-
native approach to demonstrating the importance of sensory
prediction error is to render the effects of the perturbation
irrelevant to task success (302, 373). In either case, implicit
adaptation occurs regardless of the lack of task error.

Another example where task errors and sensory prediction
errors can be dissociated is in saccade adaptation. Saccadic
eye movements tend to be hypometric, that is, they fall short
of their target, requiring a secondary, corrective saccade. Thus
saccades ordinarily elicit task errors but not, presumably, sen-
sory prediction errors. Indeed, if the target of the saccade
is shifted mid-movement to eliminate task error, participants
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exhibit an adaptive response owing to the sensory prediction
error introduced by the target jump (169, 360, 475).

Although implicit adaptation is driven by sensory-
prediction errors, explicit compensation seems to be driven by
overall task error, that is, the discrepancy between the cursor
and a target (421). In addition to task errors, which provide
information about direction and magnitude of an error, it is
also possible that learning might be driven by simple success
or failure of a movement. In many instances, it may be obvious
that an error occurred but it might not be clear exactly what
the direction or magnitude of the mistake was. For instance,
when attempting to whistle, if you fail to make any sound at
first, there is no way of knowing how you should adjust your
lips and tongue to whistle successfully. In these instances,
a more simple scalar error signal reporting the success or
failure of the movement can still be used to guide learning.
Indeed the field of reinforcement learning is devoted to this
very problem (418). In motor learning tasks, by analogy with
reinforcement learning, such scalar errors are often referred
to as reward prediction errors, suggestive of the fact that,
in adaptation tasks, the participant would presumably predict
their baseline movement to have been successful (rewarding).

Reinforcement has been shown to influence learning in
adaptation paradigms. Reinforcement of an adapted move-
ment with binary success/fail feedback after a period of
adaptation was shown to greatly enhance retention of that
adaptation when visual feedback of the cursor (and thus
task error feedback) was removed (397). In another study,
feedback in the form of punishment (monetary loss for low
performance) accelerated adaptation but resulted in reduced
retention, whereas feedback in the form of reward (monetary
gain for high performance) did not accelerate adaptation but
resulted in increased retention (116). Although it is tempting
to conclude that reward and punishment have an influence on
cerebellar-dependent implicit adaptation, subsequent experi-
mental evidence has suggested that reward and punishment
effects are instead operating on the explicit process. Indeed,
the implicit adaptation process appears to be indifferent to
reward (56,179,241). Thus, our understanding of sensitivity to
reward has followed a similar pattern to many other phenom-
ena in adaptation paradigms—initially thought to reflect prop-
erties of implicit recalibration (e.g., savings, interference), but
then subsequently found to stem from explicit compensation
processes.

Learning from reward prediction errors can be studied in
isolation by eliminating sensory-prediction-error based recal-
ibration, usually by withholding continuous cursor feedback
altogether during movement and instead providing a binary
hit/miss or scalar score signal at the end of the movement.
Using these kinds of feedback it is possible to elicit adap-
tive changes in movement direction, which persist after feed-
back is removed (201,321,397,428). However, such learning
leads to narrower generalization and negligible aftereffects,
compared to implicit adaptation driven by sensory-prediction
errors (201).

Temporally stable vs. temporally labile adaptation

Another empirical way to decompose adaptation is through
studies that systematically probe the decay of motor adapta-
tion with time. It has long been established that varying the
time interval between trials can affect how participants adapt
to a perturbation (191,230). More detailed examination of this
effect has shown that learning in both visuomotor rotation and
force-field adaptation tasks can be decomposed into two dis-
tinct components according to their sensitivity to the passage
of time: a temporally labile component that decays rapidly
with time (with a time constant of about 15-20 s), accounting
for 20% to 25% of overall adaptation, and a temporally sta-
ble component that does not decay with time (at least over
the timescales examined, 2-20 min), accounting for 75% to
80% of overall adaptation (145, 403). It seems likely that the
two processes identified this way are also related to explicit
and implicit learning: the stable component may corre-
spond to implicit recalibration, while the unstable component
may correspond to disengagement of explicit compensation.
The exact relationship has yet to be rigorously established,
however.

Adaptation, therefore, can be implicit or explicit (424).
Some components of adaptation require longer reaction times
to be expressed (149). Some components are fast to adapt,
while some are slow (407), and can be either stable with
the passage of time or rapidly decay with it (145, 403). It
seems likely that these various dichotomies are simply differ-
ent ways of looking at the same two fundamental adaptation
components: a component that learns slowly, is retained well,
is implicit and expressible at low reaction times, is temporally
stable, and is driven by sensory-prediction error; and a second
component that learns quickly, is poorly retained, is explicit
and expressible only at high reaction times, is temporally
labile, and is driven by reward and task success (193).

Forward and inverse models

Implicit adaptation has been closely tied to the concept of
forward models (26,193). Forward models are networks in the
brain that predict the sensory consequences of a given motor
command in a given environment (294,472) (Fig. 8). Forward
models play an important role in the control of movement by
allowing the motor system to counter the effects of delays
in sensorimotor loops. However, a forward model predicting
the consequences of a motor command could also potentially
be used to plan which motor command to select to achieve a
desired outcome, although there is little evidence at present
that forward models are ever used in this way.

Theory suggests that learning of a forward model, as a
form of supervised learning, should be guided by the errors
in its output. The output of a forward model is a prediction
about the sensory consequences of a movement, and thus
the appropriate error signal to update a forward model is a
sensory prediction error: the difference between where you
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Figure 8 A forward model for the prediction of the sensory conse-
quences of motor commands (in this case, for arm movements). In this
diagram, the forward model receives a copy of the efferent motor com-
mand and predicts the sensory consequences of that motor command. If
the actual sensory consequence is different than the one predicted, the
resulting sensory prediction error will act as a training signal to update
the forward model.

predict you will see your hand (or a cursor) and where you
actually see it at the end of the movement. Modification of the
forward model in this manner enables the state of the body
to be more accurately estimated during movement and, in
principle, could influence how we adjust future movements.

It has also been suggested, however, that errors might be
used to more directly modify our controller. In this sense,
the controller is often referred to as an inverse model, since
it maps desired outcomes to motor output, the inverse of the
mapping implemented by the motor apparatus. An appropri-
ate signal to update the inverse model is the motor error,
that is, how wrong our motor commands (the output of the
inverse model) were. Unlike sensory prediction error, which is
immediately available by comparing predicted outcomes (the
output of a forward model) to actual outcomes, motor error is
not immediately observable. Instead, motor error must be esti-
mated from task error—a process that requires assumptions
about how variations in motor output will affect task out-
comes (1, 217). Very drastic perturbations can lead to these
assumptions being violated. For instance, although missing
a target to the left would typically correspond to a leftward
motor error (e.g., aiming too far to the left), when acting under
mirror-reversed visual feedback this relationship is reversed;
a leftward miss actually corresponds to a rightward motor
error. This incongruence leads to unstable behavior in which
errors become exacerbated by adaptive corrections rather than
diminished (262), supporting the idea that implicit recalibra-
tion relates to updating of an internal inverse model.

How might internal forward and inverse models be
encoded? Some hints have been revealed by studies of force-
field adaptation in the arm, where the imposed perturba-
tions depend on movement kinematics. Many natural forces
we experience depend on the kinematics of the arm: for
example, elastic forces depend on displacement, and iner-
tial forces depend on acceleration. We are accustomed to
velocity-dependent forces when moving under water, and we
even experience lateral velocity-dependent forces through the
coriolis effect, when making a reach while our body rotates

(255). Interestingly, in line with how common kinematics-
dependent forces are in our environment, adaptation data
suggest that the motor system encodes forces in terms of
kinematic variables such as position and velocity even when
the forces imposed are not explicitly defined in terms of these
variables (402,404,449). This is consistent with the idea that
adaptation arises through updating an internal model of body
dynamics, which can be modeled as a function of the posi-
tions, velocities, and accelerations of joints, and their cross
terms (180).

Variability and the balance between exploration
and exploitation in motor adaptation

All movements made, even by neurologically healthy individ-
uals, are inherently variable. Motor variability is commonly
regarded as an impediment to successful performance—
if a movement were perfect, why should the next one be
performed differently? Some recent studies, however, have
pointed out that motor variability is not merely noise, but
might also reflect the motor system’s active exploration for
better motor plans for the given environment (81,479), in line
with ideas in operant learning (319, 406). Motor variability
in a reaching task increases following unsuccessful move-
ments (335, 437), suggesting that variability can be flexible:
if the same movement has repeatedly led to more success than
other movements, the motor system can exploit this by trying
to produce as similar a movement as possible on the next
trial, reducing variability; by contrast, if a given movement
is unsuccessful, the motor system can increase variability to
explore for more successful ones in the next attempt.

Importantly for motor adaptation, increased exploration
can facilitate the “discovery” of the movement that best coun-
ters the perturbation by increasing the likelihood of finding
a better action. In line with this idea, Wu and colleagues
showed that the speed of adapting to a new perturbation
can be predicted by the amount of baseline motor variability
(81, 105, 479), and found that training participants on novel
types of force fields (different combinations of velocity and
position-dependent components) led them to restructure their
variability to better align it with the newly experienced envi-
ronment (479). This shows that exploring the learning param-
eter space in dimensions relevant to the subsequent perturba-
tion can lead to faster adaptation, as better solutions can be
more quickly found (31, 443, 477). The relationship between
variability and learning rate is also predicted by a theory in
which learning occurs through sequential sampling of actions
(150). Accepting and sampling around successful actions,
while rejecting unsuccessful actions and backtracking to a
previous sample provides a simple but effective method of
improving one’s actions over time that can account surpris-
ingly well for the time course of learning. Sampling more
broadly increases variability but allows for faster identifica-
tion of more successful actions.

The above studies are more consistent with variability
operating via the explicit target-based aiming component of
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Figure 9 Savings in motor adaptation. (A) Savings in visuomotor rotation adaptation [with permission from (249)], illustrated by the faster
reduction in error during readaptation (black circles) compared to initial adaptation (white circles). (B) Savings in locomotor adaptation [with
permission from (271)]. In this adaptation paradigm, participants walk on a split-belt treadmill which can impose different speeds on each
leg. The introduction of this leg speed discrepancy reduces gait symmetry (y-axis, with 0 indicating perfect symmetry). The restoration of
gait symmetry is faster during relearning (red) compared to initial learning (blue). (C) Savings in saccadic adaptation [with permission from
(237)]. This study trained monkeys on a positive (>1) saccadic gain, had them unlearn it by imposing a gain in the opposite direction, and
then had them learn a positive saccadic gain again. The rate of relearning was faster, as indicated by the steeper slope in the learning curve.
Panels (B) and (C) republished with permission of the Society for Neuroscience from (271) and (237), respectively; permission conveyed
through Copyright Clearance Center, Inc.

adaptation rather than the implicit component. Consistent with
this interpretation, Fernandez-Ruiz and colleagues noted that,
in adapting to visuomotor rotations, participants with more
variable reach angles tended to adapt more quickly (105).
When participants were forced to move at very short reaction
times, however, this relationship disappeared, suggesting that
variability was primarily introduced in the explicit component
of learning, which has more recently been shown to require
greater preparation time to be expressed. (149, 259). Thus,
the relationship between variability and learning rate falls
firmly outside the scope of state space models of adaptation
and even their Bayesian formulation (163, 443, 448). Again,
we see how, with more experiments, the adaptation effect of
interest, in this case variability, which was initially attributed
to the implicit system, gets reassigned to the explicit system.

Long-term memory in motor adaptation
So far, we have focused on adaptation during a single expo-
sure to a perturbation. The phenomenon of decay in adap-
tation paradigms suggests that adaptation might be just a
transient state, lasting little longer than the time it takes to
be attained in the first place. That would make adaptation a
poor model of motor skill learning in general, which strives
to establish robust, long-term skills. Nevertheless, adapta-
tion paradigms do in fact exhibit phenomena associated with
longer-term memory and practice, most commonly through
savings. Here, under “long-term memory,” we consider phe-
nomena that might manifest any time beyond the initial train-
ing session, from minutes to days and even weeks.

Savings

Reacquiring a skill that has already been learned once
before (but then apparently forgotten) is typically faster
than learning it the first time. Hermann Ebbinghaus, in his
magnum opus Memory: A Contribution to Experimental

Psychology (96), coined the term “savings” to describe this
phenomenon, after observing that he was able to more
quickly relearn a series of nonsense syllables that he had
learned earlier but had since unlearned or forgotten—thus
saving him time. Savings is ubiquitous in learning, occur-
ring across different learning domains and paradigms. Exam-
ples include cognitive tasks such as recalling words, sounds,
or images (267, 316, 317), operant conditioning in animals
(114,291,315), serial reaction-time tasks (445), and in learn-
ing to generate faster, more accurate finger movements (305).

Savings has been extensively studied in motor adaptation,
where it manifests as faster learning (fewer trials required)
during the second exposure to a perturbation. Savings has
been observed in saccade adaptation (237), gait adaptation
(271, 283, 361), force-field adaptation (46), and visuomotor
adaptation (149, 190, 249, 383, 482). Some examples of sav-
ings are shown in Figure 9. Savings is usually examined across
exposures that are spaced quite closely in time, usually on the
same day or consecutive days. However, savings has been
observed even with several days between exposures (249).

It is important to note that if savings is examined before
the initial adaptation has been fully extinguished, what might
appear as faster readaptation could reflect either faster relearn-
ing or residual unwashed-out adaptation from the initial expo-
sure, or a combination of the two. In examining savings, it
is crucial to distinguish between these two potential contri-
butions, as the latter does not reflect an improvement in the
ability to learn it anew (for further commentary on this dis-
tinction, see (247)). Additional caution in examining savings
is needed since, when there are multiple components to adap-
tation, washout might not return all of these components to
the original baseline, even if overall performance appears
to have returned to baseline. In the case of the two-state
(fast/slow) model of Smith and colleagues, the fast washout of
the “faster” component masks the incomplete washout of the
“slow” one. During readaptation, the partially retained “slow”
learning component provides a more advantageous starting
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point, resulting in a learning curve that appears faster than
initial learning (146, 407). Although this explanation might
account for savings in some instances, it does not seem to be
the primary mechanism by which savings occurs. For exam-
ple, savings can be observed even after a prolonged washout
period (487), which is likely to ensure that all learning com-
ponents have returned to baseline; this cannot be accounted
for by the two-state model, or any similar state-space model
(i.e., linear, time-invariant model with fixed parameters). One
way to obtain savings with these models is to allow the learn-
ing rate to change across learning sessions (487). This change
in “error sensitivity” is in fact exactly what has been recently
been claimed to have been demonstrated in a series of exper-
iments (134, 173, 261, 283).

An alternative explanation of savings is that, during
washout, the memory for how to counter the perturbation
is disengaged and then later retrieved again when the pertur-
bation is reintroduced (190, 334). In this case, there is only
an apparent rate change but what it is really happening is
retrieval over a few trials. In support of this retrieval theory
(151), it has been found that introducing an unfamiliar per-
turbation can prompt participants to retrieve the learned solu-
tion to a perturbation that has been experienced before, even
if the familiar and unfamiliar perturbations require opposite
responses (134, 276, 301). This behavior strongly suggests
a tendency to retrieve a previously successful action when
encountering any error in the future. Indeed, it is possible to
generate savings for an unfamiliar perturbation and unfamiliar
target, provided the action required to counter the perturbation
also happened to be the solution to a previously experienced
perturbation (190, 482).

What makes people remember certain actions to retrieve
them later? Simply repeating a successful action does not
seem to be sufficient in order for it be retrievable for future
savings (190, 482). Instead, it seems that what is important is
associating the movement with a significantly improved out-
come (a positive reward prediction error)—which accounts
for the fact that savings seems to be only possible after
abruptly introduced perturbations, not gradually introduced
ones (173, 261, 482) (since reward-prediction error on any
given trial is small in this case), and for the fact that robust
savings can occur after as few as five trials of exposure to
the initial perturbation (192) (as most of the improvement
and, thus, positive reward prediction error, already occurs
within this short window). Furthermore, as discussed before,
reinforcement also seems to be important for increasing the
persistence of adaptation against decay (397).

Given that adaptation is comprised of multiple compo-
nents, which of these components is responsible for savings?
Several studies have shown that savings following a single
exposure to a perturbation is attributable to just one com-
ponent of adaptation. Limiting preparation time to prohibit
expression of deliberate components of adaptation eliminates
the expression of savings during a second exposure to a per-
turbation (149). The lack of savings in implicit components of
adaptation has also been shown by more directly instructing

participants to withhold any explicit strategy on certain trials
(194, 301). Finally, decomposing adaptation into temporally
labile and temporally stable components has also shown that
slower, more stable components of learning do not show any
savings effects (146). These diverse empirical approaches all
make a compelling case that savings is an inherently explicit
phenomenon mediated by a retrieval mechanism. It is not
attributable to a gain change on the implicit component of
adaptation. To the extent that error sensitivity does appear
to vary with experience, this seems to be related to global
behavior in adaptation paradigms, and is broadly consistent
with the retrieval theory of savings.

Interference

Learning to successfully compensate for one perturbation can
impede our ability to compensate for a second perturbation.
This phenomenon, termed interference has been thoroughly
studied within the setting of force-field and visuomotor rota-
tion tasks (249, 386). For example, let us assume adaptation
to a rotation A is followed by adaptation to another rota-
tion B, with A and B typically equal in magnitude but acting
in opposite directions. Notably, it is difficult to successfully
compensate for both A and B in interleaved trials even with
seemingly salient contextual cues (e.g., colors) (5, 120, 142).
This interference is termed anterograde interference, since
learning of A interferes with the ability to learn B in the
future. Anterograde interference can be well characterized by
state-space models (405) and has been taken to represent an
inherent property of the implicit learning system. This con-
clusion is not entirely unjustified because if a contextual cue
fails then interference of A on B is consistent with carry-over
of aftereffects. However, the apparent purity of anterograde
interference in adaptation tasks is complicated by the vexed
issue of why some contextual cues succeed in preventing it
whereas others do not.

Context can be tricky to define but here we borrow a defini-
tion: the contextual signal should be orthogonal to the sensori-
motor transformation required for adaptation itself (471). For
example, people who wear glasses require the maintenance
of two distinct gains of their vestibulo-ocular reflex—one in
the context of wearing glasses and one when the glasses are
removed. In this case, the contextual cue may be the sensation
of the glasses on one’s skin, a sensory modality clearly not
relevant for adaptation to lenses. Very interestingly, simple,
abstract contextual cues, like the color of a cursor, do not pre-
vent anterograde interference in reaching experiments; partic-
ipants seem to generalize 100% of their adaptation from one
color to another, even if they are fully aware that different col-
ors are associated with different perturbations (5, 120, 142).
Nevertheless, certain contextual cues can prevent interfer-
ence. For example, providing visual cues about the orienta-
tion of a virtual object under control (185, 196), requiring
participants to manipulate different points on a virtual tool
(165), or depicting a different tool altogether (67) can enable
participants to maintain distinct adapted states despite these
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states having identical movements at baseline. A change of
effector prevents interference for visuomotor rotation (247).
Adding a lead-in period before an invariant point-to-point
movement segment (184) or a follow-through (186,395) also
seems to serve as an effective contextual cue to prevent inter-
ference when attempting to learn two opposing force fields.
This use of pre- or postmovements seems to work even if
participants are allowed to pause briefly between the lead-
in and the main movement, so long as they occur in quick
succession (< 0.6 s delay between movements) (184). Inter-
estingly, it even seems sufficient to overcome interference by
merely planning a different follow-through, without ever exe-
cuting it (395). A similar demonstration of the importance of
movement intention was shown by Hirashima and colleagues
(178), who used two opposing visuomotor perturbations to
trick participants into using the same movement to guide a
cursor toward targets in different locations. Despite the sim-
ilar movements, participants found it easy to simultaneously
adapt to subsequently imposed force perturbations that were
different in these two contexts.

So what distinguishes cues that prevent anterograde inter-
ference from those that don’t? The answer does not seem
to pertain to the implicit adaptation process per se. Instead
the critical factor relates to the movement goal; if the cues
can be associated with distinct goals then interference can be
prevented despite considerable overlap in the details of move-
ment execution for each goal (395). This is profound because
it suggests that anterograde interference is not an inevitable
low-level motor process but, instead, is a form of high-level
cognitive mistake. Colors fail because they do not signify a
different movement goal: it is still to make the same straight
reach to the same target regardless of whether the target is red
or blue.

Another form of interference is retrograde interference,
which happens when the learning of B interferes with the
memory of having previously adapted to A. It therefore mani-
fests as lack of savings for A when A is re-learned after having
also learned B. A task design that allows for examining these
learning rate differences has the form A→B→A, where the
interference of B on the relearning of A can prevent savings
in the relearning of A (which would be present had B not
been experienced). Using this design, it was found that learn-
ing the opposing rotation B reduces savings in the relearning
of A (55, 249, 250, 459), implying that learning B interfered
retrogradely with the memory formed while learning A.

Initial force-field adaptation experiments suggested that
retrograde interference is strongest when training of B imme-
diately follows that of A, and then gradually decreases with
time elapsed between those two training episodes, to the point
that savings for A is essentially fully restored when the spac-
ing between A and B is about 6 hours or greater (46). This
time gradient of interference has been taken as a marker of
a gradual consolidation process for motor adaptation, which
mirrors analogous findings for the consolidation of declara-
tive memories. However, further experiments were not able to
corroborate this graded interference for visuomotor rotation

tasks, with retrograde interference occurring even when the
spacing between A and B was 24 h (55,247,249). In retrospect,
the unfolding of the retrograde interference story is perhaps
less surprising than it might at first seem. As we have already
seen in this review, phenomena that were initially associated
with the implicit recalibration component of adaptation have
since been understood to be properties of the explicit com-
ponent of adaptation. Savings for visuomotor adaptation is
the most notable example (149, 193, 301). We suggested in
2005 that failure to resist retrograde interference was due to
two rotations being equally strongly associated with the same
reaching goal (247,249). Indeed, when this issue was partially
resolved by adding unrotated washout periods before learning
either A or B, thereby weakening the association of the same
goal with a previous rotation (247), retrograde interference
was found after 5 minutes but not after 24 hours, in line with
the consolidation gradient shown for force-field adaptation.
Thus there may well be a small retrograde interference effect
operating on implicit recalibration, but it is swamped by a
cognitive phenomenon—a failure to reengage a previously
learned explicit aiming strategy because two aiming mem-
ories (for A and B) compete with one another for retrieval
(247). This theory is consistent with more general theories of
declarative memory (470).

Adaptive responses in variable environments

We have earlier mentioned that, when presented with envi-
ronments in which perturbations can vary from one trial to
the next, participants adapt to the expected value of the per-
turbation. Even when not affecting the extent of adaptation,
environmental variability strongly modulates motor responses
whose purpose is to maintain stability, such as the grip forces
used to maintain contact with the manipulated object (147),
the stiffness of the arm used to minimize the destabilizing
effect of unexpected perturbations (110, 111, 297, 419), and
the magnitude of feedback responses used to restore stability
against such unexpected perturbations (112, 134, 486).

The statistics of the distribution of experienced
perturbations—or the errors these perturbations caused—can
also influence how quickly we adapt. The rate of adaptation
has been shown to depend on the consistency of the expe-
rienced environment—how likely a perturbation is to per-
sist from one trial to the next; adaptation speed increases in
consistent environments and decreases in inconsistent ones
(134,173). Critically, consistency-driven increases in adapta-
tion speed are particularly strong when there is repetition of
the exact same perturbation (134).

Apart from adapting to environments, in which the same
type of perturbation can vary simply in magnitude, we might
also need to repeatedly adapt to sets of perturbations or envi-
ronments that might vary along a less obvious dimension. For
instance, we might have to use different knives that might vary
in their size, weight distribution, and sharpness. We would
want to be able to rapidly adapt to the specific properties of
each knife while not worrying so much about features that
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tend to be shared across all knives (a handle at one end and a
blade at the other). It has been proposed that people can learn
and exploit structure in a learned family of perturbations or
environments through a process termed “structural learning”
(47, 433, 486). When naı̈ve to the type of a perturbation, the
motor system can interpret a given error in many different
ways (e.g., a leftward error could be due to a rotation of the
cursor, but could also be due to a lateral shift of the cursor,
a shear, and so on). The ambiguity as to which parameters
are relevant results in slower adaptation. However, after gain-
ing experience in how these perturbation parameters tend to
co-vary with one another across different environments, the
motor system can restrict its learning within a much more
limited space, facilitating learning the next time a similar
perturbation is encountered. This kind of structural learn-
ing has been demonstrated in adaptation tasks (47, 433, 486).
However, it remains unclear whether this learning reflects
changes to the properties of implicit learning or to explicit
learning.

The neural basis of motor adaptation
Role of cerebellum: prediction

The cerebellum plays a critical role in motor adaptation, as
has been established through numerous lines of evidence
(73, 390, 410). Cerebellar lesions in monkeys abolish the
ability to adapt saccades (25). Numerous studies in patients
with cerebellar degeneration have revealed profound deficits
in visuomotor adaptation (275, 302, 347, 378, 432), force-
field adaptation (68, 129, 277, 347, 408), saccadic adaptation
(131, 483), locomotor adaptation (303), and speech adap-
tation (331). In healthy participants, adaptation appears to
be enhanced by anodal cerebellar direct-current stimulation
(tDCS) in force-field tasks (172), visuomotor rotation tasks
(117), and locomotor adaptation tasks (205) (although the
effects of cerebellar stimulation on visuomotor rotation adap-
tation remain under debate (202)).

It is widely believed that the cerebellum implements a
forward model, which predicts the consequences of efferent
motor commands during movement [e.g., (472)]. In support
of this idea, the cerebellum has indeed been widely impli-
cated in state estimation during movement (293, 483). Fur-
thermore, the Purkinje cells within the cerebellar cortex seem
to encode the outcome of an action (such as the trajectory of
a movement) (26, 97, 170), rather than the motor commands
themselves. It has been suggested that cerebellar nuclei may
transform this kinematic prediction into a motor command
(170, 171, 290).

It is often assumed that forward models are necessary for
predictive control. For instance, when a heavy load supported
on one hand is removed by the other, the supporting force is
seamlessly decreased at the time of unloading—a behavior
that is necessarily anticipatory, due the delays in perceiving
the unloading. In an interesting case study, a patient with-
out a cerebellum was found to be unable to achieve such

predictive control (326). With one hand, the patient held a bas-
ket into which a ball would be dropped from the other hand.
In contrast to controls, the patient was unable to predict the
change in grip force required due to adding the ball’s weight
to the basket and was thus unable to adjust their grip ahead of
impact. Interestingly, however, overlearned anticipatory pos-
tural adjustments remain intact in patients with degeneration
of the cerebellum in later life (82, 430). These same patients
could not, however, learn a new pattern of anticipatory control
(82). Together, these results suggest that, although a forward
model prediction can be useful for initially learning predic-
tive control, forward model prediction is not always neces-
sary for anticipatory control, particularly for well-practiced
movements.

Importantly, cerebellar activity correlates with the pres-
ence of errors that can drive adaptation. For example, an imag-
ing study compared cerebellar activation in trials where an
error was or was not experienced, and found increased activa-
tion during error trials, specifically in lobules V and VI (377).
Another imaging study, which modulated the delay between
a motor command and the resulting sensory feedback, found
that activity in the right lateral cerebellum correlated with the
delay, suggesting a representation of the sensory prediction
error resulting from the delay (41).

Data from patients with cerebellar degeneration suggest
that the cerebellum is specifically involved in learning from
sensory prediction errors. Unlike healthy control participants,
patients with cerebellar degeneration exhibit very little learn-
ing in circumstances where they receive sensory prediction
errors in the absence of task errors (423). They also show
diminished implicit contributions to adaptation (54). Cerebel-
lar patients are better able to partially adapt to a perturbation
that is gradually introduced, compared to one that is abruptly
introduced (68,200). However, when patients do successfully
compensate for a gradually introduced perturbation, they fail
to exhibit any changes in their perceived movement outcomes,
similar to healthy participants who learned to counter the
perturbation through reinforcement alone (200). Therefore,
spared learning in cerebellar patients likely occurs through
a learning mechanism other than implicit recalibration—
potentially through trial-and-error reinforcement.

The available neural circuitry in the cerebellum seems
well suited to support error-based mechanisms of adaptation.
Purkinje cells in the cerebellum receive synapses from two
distinct types of fibers: a large number of parallel fibers, which
induce simple spike activity in the Purkinje cell, and a single
climbing fiber originating in the inferior olive, which induces
complex spike activity. A longstanding theory of cerebellar
learning, initially proposed by Marr and Albus, is that the
strong discharges from the climbing fiber carry sensory error
information necessary to update an internal model, which is
encoded in the synaptic strength of the much weaker paral-
lel fiber connections (10,199,274). Consistent with this idea,
adaptation studies in monkeys find increased complex spike
activity after introduction of a novel perturbation (409) which
persists until successful compensation has been achieved
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(130). These activity patterns match the emergence of errors
due to the perturbation and their subsequent reduction.

It should be noted, however, that the Marr-Albus theory
is not yet proven; in fact, there is some more recent evidence
that challenges the role of complex spikes as an error signal.
For example, another study found increased complex-spike
activity toward the end, rather than the beginning, of the adap-
tation session, when the error had been reduced (58), whereas
another study showed vestibular ocular reflex (VOR) adapta-
tion occurring even when climbing fiber activity is reduced
(225); moreover, simple spike activity, not just complex spike
activity, has been found to correlate with errors (343).

Finally, as we discussed above, it appears that internal
models pertaining to different types of perturbations can be
located in different areas in the cerebellum. Rabe and col-
leagues (347) found that, while patients with cerebellar degen-
eration showed deficits in adapting to either a force field or
a visuomotor rotation, there was no correlation in the degree
of impairment across these two tasks. A more recent study
used MRI to systematically map specific lesion locations in
patients with cerebellar degeneration and investigated how
these locations relate to performance in a force-field versus
a visuomotor rotation task (86). The finding was that both
types of adaptation related to the anterior arm area (lobules
IV-VI), with the more anterior part (lobules IV-V) being more
involved in force-field adaptation and the more posterior part
(lobule VI) in visuomotor adaptation, whereas other regions
(crus I and II, which are more commonly implicated in exec-
utive control than motor learning per se) were involved in
both tasks.

Cortex

Galea and colleagues (117) used transcranial direct current
stimulation (tDCS) to modulate the excitability of the motor
cortex. They found that applying cathodal tDCS to primary
motor cortex (M1) led to increases in retention but not in
the rate of adaptation. Similarly, anodal TDCS on M1 led to
increased aftereffects after force-field adaptation (172, 195).
Corroborating these findings, it was found that temporary dis-
ruption of M1 using repetitive transcranial magnetic stimula-
tion (rTMS) immediately before adapting to a viscous force-
field did not alter the speed of adaptation but did reduce
the retention of adaptation the following day (355)—though
applying rTMS after the initial adaptation to a force-field
seems to show no retention deficit (24). In another study, dis-
ruption of M1 (but not the premotor area) through single-pulse
TMS immediately after the completion of each trial during
the learning period in a visuomotor adaptation increased the
speed of deadaptation during a subsequent washout period
(144). Together, these results suggested a role for the primary
motor cortex in the retention, but not acquisition, of motor
adaptation.

Recently, in a novel force-field adaptation task in mice,
Mathis and colleagues showed that optogenetic inhibition
of the primary somatosensory cortex (S1) extinguished

adaptation but left reward-based learning intact. These find-
ings led the authors to hypothesize that S1 could be involved
in storing or updating the internal model mediating adaptation
(278), however it remains unclear to what extent the learn-
ing in this task is mediated by sensory-prediction-error-based
adaptation.

Disruption of the posterior parietal cortex (PPC) using
rTMS was found to have no effect on the early phase of adap-
tation to a viscous force field, but instead resulted in a sig-
nificant reduction of the level of adaptation reached at steady
state (77). In line with this result, a positron emission tomog-
raphy (PET) study found increased PPC activation during the
late phase of visuomotor rotation adaptation rather than ini-
tial adaptation (251). Another imaging study of force-field
adaptation found increased PPC activation during the post-
consolidation recall phase compared to the end of the initial
learning period (386), with the shift toward PPC activity also
suggesting its role in maintaining a more stable representation
of the adaptation. One paper reported results suggesting that
adaptation might be lateralized; patients with right parietal
damage exhibit normal visuomotor adaptation, while patients
with left parietal damage exhibit deficits in adaptation and no
aftereffects (312).

Overall, however, we believe it is fair to say that the results
above do not comprise a particularly compelling or coherent
account of the role of cortical structures in adaptation. Exactly
how the cortex contributes to behavior in adaptation tasks
remains unclear.

Basal ganglia

A few studies examined patients with basal ganglia disease,
generally finding intact adaptation but reduced long-term
memory. For example, Huntington’s disease patients, in con-
trast to cerebellar patients, exhibited no deficits in adapting to
a force field (408). Gutierrez-Garralda and colleagues (143)
found that both Huntington’s and Parkinson’s disease patients
showed normal prism adaptation but reduced aftereffects. In
other studies, patients with Parkinson’s disease were found
to exhibit normal adaptation to a visuomotor rotation but a
lack of savings when tested a few days later (30, 260, 272).
Moreover, imaging studies have generally found the basal
ganglia to be activated during the early phase of visuomotor
gain adaptation (251), visuomotor rotation adaptation (384),
and force-field adaptation (386), but less so in the late phase.
Together, these results suggest that the basal ganglia may play
an important role in the more cognitive components of motor
learning, but not implicit adaptation, potentially related to the
well-established association between the basal ganglia and
learning from reward.

Summary: Adaptation
Being able to adapt motor commands to a constantly fluc-
tuating environment is a key aspect of motor control and
learning. Indeed, the motor system seems to have developed
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dedicated learning mechanisms for maintaining calibration of
actions through a cerebellum-dependent, error-driven implicit
learning process. This process maintains accurate movement
execution. As such, studying adaptation is by itself crucial
to understanding how we are able to maintain our exist-
ing skill set despite an ever-changing environment. At the
same time, it is clear that adaptation tasks probe more than
just the brain’s capacity for recalibration; implicit recalibra-
tion mechanisms are augmented by other learning processes
that may influence action selection (e.g., cognitive strategies
such as explicit re-aiming) when a participant is attempting to
counter an imposed perturbation. The motor system will bring
to bear whatever tools it has available on maintaining and
improving performance. Adaptation tasks thus rarely provide
a pure assay of implicit recalibration and instead are contam-
inated by the involvement of more general-purpose learning
mechanisms. Somewhat ironically, it is the additional learn-
ing mechanisms, and not implicit recalibration mechanisms,
that are responsible for the lion’s share of interesting phe-
nomena in adaptation experiments: savings, interference, and
inter-individual variability. Conversely, although adaptation
tasks can provide insights into the nature of these general-
purpose learning mechanisms, the presence of recalibration
mechanisms makes it complicated to use adaptation tasks for
that purpose. In any given experiment, it can be very diffi-
cult to discern exactly which learning process is responsi-
ble for different aspects of learning unless they are deliber-
ately measured as part of the experiment. Consequently, it is

important to remain cautious when generalizing findings from
the adaptation domain to the domain of motor skill learning.
Ultimately, we suggest that the processes supporting motor
skill learning are better-studied using paradigms that more
successfully isolate them, as we discuss in later sections.

Sequence Learning
Much effort in motor learning research over the past cen-
tury has been devoted to studying how a given set of actions
becomes organized into a particular temporal order to achieve
a task. This set of actions (i.e., the goal) may be a group of
discrete movements (such as the set of actions required to
prepare a cup of tea), a continuous and overlapping series
of events within a single movement (such as the sequential
muscle activations required to perform a serve in tennis), or
something in between. Regardless of the specific example
being studied, however, the manner in which sequences are
learned, reproduced, and represented in the brain is believed
to be of critical importance to motor control.

Why study sequences?
In activities of daily living, accomplishing any task requires
that some sequence of actions be performed to complete an
ordered set of subtasks (Fig. 10). These types of sequences
require learning the appropriate order of distinct, discrete
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Figure 10 Forms of sequence learning. (A) At the level of the task, sequential order dictates the
series of complex, potentially multimovement actions that must be performed to satisfy an overall
goal, such as the individual steps required to prepare a cup of tea. Learning to perform these
steps in the correct order—largely a cognitive form of learning—has little bearing on the quality
of how these steps are executed. (B) At the level of controlling a single movement, muscles must be
activated in a particular order to successfully change the position of the limb accurately. Although
these steps do not reach the level of conscious thought, the ability for the motor system to execute
each sequence element in the correct order and with the correct timing critically affects the quality
of the resulting movement. Note that, although these two types of sequences are frequently cited
as inspiration for studying the learning of sequences, in practice sequence-learning paradigms
largely focus on the acquisition of discrete sequential actions.
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actions or steps. For example, making a cup of tea requires
steps such as filling a kettle with water, bringing the water
to a boil, placing a tea bag in an empty cup, and pouring
boiling water in the cup. Although the order of some steps
may be switched without dramatic impact on the outcome
(e.g., pouring water into the cup before adding the tea bag),
other steps have a strict temporal order that is required to be
successful (i.e., heating the water in the kettle before pour-
ing it into the cup). This sequence of actions constitutes the
goal to be achieved to accomplish the intended task; typically,
the individual action elements are already well known, and
it is largely the ability to select these actions in the appro-
priate order that must be learned. Successful execution of
such sequences in the correct order may seem trivial, but
this ability is disrupted in ideational apraxia, a neurological
disorder often observed in patients with Alzheimer’s disease
(32,342). Another activity of daily living in which sequences
play a particularly important role is language. The rules of
phonology, morphology, and syntax dictate how sounds and
words must be sequenced to convey intended meaning (256),
which in turn guide the control of motor speech production.
In language, as in other types of sequential behaviors, indi-
vidual elements become grouped into particular chunks—that
is, a hierarchical associative grouping structure that aids in
the representation and recall of sub-sequences of events dur-
ing a task (45, 236, 363). For instance, a series of sounds
are organized into a word that must be executed by mov-
ing the muscles of the throat in a particular order; patients
with apraxia of speech produce sounds inaccurately because
they have difficulty producing the appropriate sequence of
speech movements. In the laboratory, the organization of
ordered actions is often studied using simplified tasks such
as sequences of button presses or saccadic eye movements.
Learning to select each action in the appropriate order (325),
and to eventually generate sequences in a largely automatic
or routine fashion (366), are of critical importance for many
motor skills.

The second distinct notion of sequence learning is that
of continuous sequential actions: the idea that continuous,
single movements are nevertheless comprised of sequential
sub-elements, even if there are no clearly identifiable discrete
boundaries between these components. Here the goal of the
task can be quite simple, and learning involves changes in
the particular action that is selected and how that action is
to be executed. For example, the activation patterns of mus-
cles and the movements of individual limb segments during a
simple reach (Fig. 10B), and the component sub-movements
that form a tennis serve, are two examples of continuous
action sequences. The ability to coordinate the order, timing,
and duration of muscle activations [e.g., the triphasic burst
of activity observed for fast reaching movements (51,153) or
the activity of the six extraocular muscles when generating
an oblique saccade (231)] to produce a desired continuous
movement requires that the motor system learns to generate
the correct time-varying sequence of commands to execute
an action accurately (37). Note, however, that this does not

necessarily mean that such sequences need be overtly repre-
sented anywhere.

These two ways of conceptualizing motor sequences, i.e.,
as selection of the correct order of discrete actions versus exe-
cution of a continuous sequential action, are quite distinct and
should not, in our view, be conflated. The fact that a patient
with ideational apraxia can make a normal reaching move-
ment attests to the validity of keeping them separate. Thus,
behavioral improvements in these two types of sequential
tasks likely require learning at different motor planning stages
(Fig. 1). Sequence learning, as it is currently studied, primarily
investigates learning the proper order of a sequence of dis-
crete actions (or sub-movements) such that each is selected
rapidly and executed accurately (i.e., goal selection and action
selection). These tasks are often claimed to be models for the
production of continuous movements such as a tennis serve.
However, the representations of discrete sequences are almost
certainly distinct from those that comprise a single action. For
example, discrete sequences are (at least initially) explicitly
represented as a set of behavioral rules to be followed (i.e.,
selection of the correct order of actions), whereas the coordi-
nated sequence of muscle activity that occurs when executing
a continuous action never reaches this level of awareness.
Furthermore, it seems unlikely that a continuously varying
movement is ever represented in terms of a discrete sequence
of events. Thus in our view, studies of discrete sequence order
have not been and are not likely to be of great use in explaining
how a tennis serve is learned or how prehension becomes more
accurate. Nevertheless, discrete sequence tasks can teach us
a great deal about how the brain learns to abstractly represent
orderings of discrete actions.

Sequence learning paradigms
The vast majority of sequence-learning paradigms are con-
cerned with the learning of discrete sequential order. These
tasks provide a series of discrete operations that must be per-
formed in a particular order, and then assess how quickly
those operations are collectively completed. The sequence
elements themselves can be fairly simple and over-learned,
such as pressing buttons on a keyboard.

Although seemingly a straightforward question, a num-
ber of factors complicate the interpretation of learning the
sequential order in such tasks. These difficulties limit the
extent to which broad conclusions can be drawn from spe-
cific paradigms. In particular, it can be difficult to disentan-
gle learning of the required sequence order from learning to
execute the individual movement elements that make up the
sequence (128). Another complication is that it can be chal-
lenging to disentangle the contributions of explicit instruc-
tions and implicit knowledge of the sequence, which have
both been hypothesized to contribute to overall sequence per-
formance. Here, we review the current state of understanding
of sequence learning and illustrate these difficulties in more
detail. First, however, we describe the primary paradigms that
have been employed to study sequence learning.
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Simple sequences

The simplest sequence-learning task requires participants to
practice executing a single, short sequence of about 4-6
elements, typically key presses with different digits of the
hand (like playing the piano) (221, 222), with the goal of
becoming as fast and accurate as possible at executing the
sequence (92,221,245,246,445,446,457). Since the sequence
order is explicitly provided to participants at the beginning of
the task, the intent of this paradigm is to study improvements
in the performance of skilled sequential movements rather
than the learning of the sequence order itself. The main find-
ing is that, over days of practice, participants get better at exe-
cuting the sequence: they move faster and more accurately.
Furthermore, participants improve their performance more
on the practiced sequence than on other sequences (although
there may also be non-sequence-specific improvements, as
we shall discuss later).

It is commonly assumed that specificity of learning to
the practiced sequence reflects the formation of a new repre-
sentation of the entire practiced sequence that supports rapid
execution. What might the nature of this representation be?
It is unlikely to be a change of the individual movement ele-
ments themselves, since these components are common to
unrehearsed sequences that are not executed so well. Instead,
sequence-specific improvements could arise due to getting
better at specific transitions between sequence elements. After
extensive practice, finger movements tend to overlap tempo-
rally with one another, that is, the next finger in the sequence
begins to move before the previous one has come to a stop.
It is these unique, sequence-specific transitional movements
between the individual sequence elements that might become
better with practice. For example, practicing the dynamics of
switching from the thumb to the index finger might make that
particular transition faster than switching from the thumb to
the pinky finger.

If it is the case that particular sequence orders do impose
unique execution demands, then simple sequence tasks might
in fact ultimately probe participants’ ability to learn to execute
a unique and complex continuous movement—more akin to
a tennis serve than making a cup of tea. There is, however,
no convincing behavioral evidence for such practice-induced
sequence specificity. All studies of simple sequences to date
have demonstrated improvements of behavior at the level of
the whole sequence (as is consistent with all other sequence
tasks), but no study has carefully examined the learning of
transitions between individual movements. In fact, a recent
fMRI study failed to find any evidence for the representa-
tion of a sequence as a single, continuous action rather than
the simple summation of its component elements (38, 484).
Instead, these findings suggest that sequence specificity might
arise for non-motoric reasons, such as improved recall of
the order of the individual elements, increases in motiva-
tion arising from greater knowledge of the sequence order
(474), and the formation of compact, symbolic representations
of ordered groups of actions (see Hierarchical organization

section below). Hence, despite the hope that the study of
simple sequence tasks that allow overlapping finger move-
ments would provide the insight into motor skill learning in
general, at present this paradigm, like the others we will dis-
cuss, seems to mainly inform as to how abstract and discrete
sequence order is learned and represented.

Serial reaction time task (SRTT)

By far the most prevalent paradigm used to study sequence
learning is the Serial Reaction Time Task (SRTT) (322, 358).
This task requires movements to be performed in response to
stimuli that cue the required response in a spatially congruent
manner. Often these movements are finger presses on buttons,
although variants of this paradigm have employed other move-
ments such as arm reaches (128, 299), foot stepping (93, 94)
or saccadic eye movements (126, 488) toward spatial targets
presented in a particular order. Participants are encouraged to
respond to each cue as rapidly as possible but not to antici-
pate it; the next target appears at a brief, fixed delay after the
required action has been completed, requiring participants to
wait for each target to generate a response. The order in which
targets appear (and hence the required order of movement
responses) typically obeys a specific, fixed sequence (e.g., a
constant sequence of 12 elements), thus allowing participants
to learn this order through practice.

Since the SRTT is typically implemented with button
presses, the traditional outcome measure has been the total
response time—the time from cue onset to the completion of
the finger movement to depress the button. Conventionally,
the average response time when cues appear in a sequence
is compared with the time required to respond to cues that
appear in a random fashion (the S-R difference). The S-R dif-
ference purportedly provides a sequence-specific measure of
learning that is independent of any other sources of improve-
ment, such as learning the mapping between targets and fin-
ger presses, fatigue, or other sources of sequence-independent
performance improvements. However, the S-R difference may
be influenced by cognitive factors such as changes in moti-
vation level, inhibition of the next anticipated movement, or
attempts to identify a new sequence order that arise when the
targets are suddenly presented randomly.

Unfortunately, there are two major drawbacks of the SRTT
as a motor learning paradigm. First, it is, in most cases, not
possible to subdivide the gross measure of response time into
its component parts—reaction time (RT) and movement time
(MT). Practice-related reductions in RT would more convinc-
ingly reflect knowledge of sequence order, whereas reduc-
tions in MT may instead reflect execution ability of individual
sequence elements. Unfortunately, without the ability to dis-
sociate changes to these distinct parameters, it is challenging
to identify exactly what kind of motor learning supports over-
all performance improvements in this task. More recently,
attempts have been made to distinguish RT and MT using
force-sensitive keyboards to measure finger movements (484),
or by utilizing alternative movement effectors such as the arm
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or foot (93,94,128,299,474), which allowed for a clearer dis-
sociation between movement onset and termination. These
efforts have suggested that both RT and MT decrease with
practice but are not strictly correlated. Nevertheless, the vast
majority of SRTT paradigms continue to examine response
time. The second difficulty of performing the SRTT with
finger presses is that accuracy is assayed as percentage of cor-
rect choices (the proportion of trials for which the appropriate
action was selected). Hence accuracy in this task is largely
concerned with the ability to correctly choose an action given
multiple discrete options (or the mapping between stimuli
and responses; (438)), but has little to say about the execution
quality of those actions (acuity) beyond the small number of
studies applying this paradigm to arm reaches as noted above.
Thus unfortunately, both of the primary outcomes of the SRTT
(and in fact of most sequence-learning tasks)—response time
and accuracy—are often misinterpreted.

Nevertheless, the SRTT is thought to demonstrate implicit
learning of sequence order. This is because the sequence
order is not explicitly provided to participants and sim-
ple questionnaires seem to suggest that participants do not
become aware of the whole sequence despite exhibiting per-
formance improvements (65, 66, 322, 372, 465). It turns out,
however, that participants do in fact explicitly learn sequence
fragments, and learning of these fragments appears to fully
account for any learning that occurs during this task (299),
including the S-R difference. It therefore seems that, as with
adaptation, participants do not approach the SRTT in a purely
implicit manner; task performance in the SRTT is instead
driven by explicit learning of sequence order.

Probabilistic sequence learning

In an attempt to overcome the pitfall of the SRTT not being
able to distinguish between implicit and explicit sources
of performance improvements, the SRTT has been adapted
to feature probabilistic sequences rather than deterministic
sequences (189, 208, 209, 381, 411). Specifically, rather than
learning a fixed cue order, participants instead learn statistical
regularities about the cues, such as the high likelihood (but not
total certainty) that a particular cue will succeed another (i.e.,
the transition probability). By comparing the performance on
high-probability transitions to low-probability ones, it is pos-
sible to obtain a within-sequence measure of implicit learning.
This task can be made more challenging by interleaving ele-
ments of a probabilistic sequence with random elements such
that participants are required to learn second-order (sequence
triplets) rather than first-order (pairs) transitions (188). That
is, when predicting the next response, participants need to
keep track of the previous two responses instead of only the
most recent response. These manipulations are thought to
greatly decrease the likelihood that participants can acquire
explicit knowledge of the sequence order (208,209,381,411),
providing a more robust measure of implicit sequence
learning.

This paradigm largely relies upon implicit statistical learn-
ing; that is, the ability to detect regularities in the environment
that can subsequently be acted upon even if those regulari-
ties are not consciously recognized. More formally, statisti-
cal learning is a means to discover the relationship between
observed inputs and response outputs, for the purposes of
predicting future outputs given a particular input (203). Note,
this implies that what is learned in these paradigms are the
likelihoods of pairs of cues or actions (transition probabili-
ties), not a single representation of the entire sequence as a
whole. Moreover, statistical learning may largely occur at a
perceptual level (229); participants may learn the likelihood of
seeing a particular order of cues appear, rather than directly
learning the order of responses, which can be assessed by
examining how participants respond when cue-action map-
pings are changed. Hence, although probabilistic sequence
learning provides a more sensitive assay of non-explicit learn-
ing about the sequence order, it is unclear whether this learn-
ing occurs strictly in the “motor” domain. Nevertheless, prob-
abilistic sequence learning offers intriguing insight into how
the brain might exploit statistical learning processes to better
generate sequences of actions.

Discrete sequence production (DSP) task

Although used less widely, the Discrete Sequence Produc-
tion (DSP) task (440) was designed specifically to exam-
ine chunking of series of actions into a cohesive whole. In
many ways, this task is quite similar to the learning of simple
sequences, with the additional challenge of requiring partic-
ipants to practice two or more short sequences of actions
during the same session (e.g., each about 6 keypresses long)
to examine the ability to rapidly select the desired sequential
response. Indeed, once participants learn the order of actions
required by each sequence (i.e., the sequences have become
“chunked”), this task becomes one of choosing the correct
action sequence from among multiple potential sequences,
each cued only by the first element of the sequence. More-
over, responses are encouraged to be largely anticipatory;
thus, individuals do not have to wait for each cue to appear
before generating the desired response, as with the SRTT, but
instead produce a rapid series of movements following the
initial cued movement. This avoids the potential confound
that participants are learning a perceptual sequence, but can-
not distinguish between whether the sequence is a result of
learning the order of elements or the formation of a single
continuous action.

It is most likely that changes in performance in this task
arise from knowledge of explicit sequence order. That is, even
more so than the SRTT, performance in the DSP task is likely
driven primarily by explicit learning processes. Participants
are often informed that they will practice fixed sequences
of keystrokes; thus, participants have explicit knowledge of
regularity in the order of responses required (83). Moreover,
in the DSP, unlike other sequence-learning tasks, performance
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is often evaluated after a large number of sequence repetitions
(up to 1000 trials (3)).

Hence, although participants often report not having
explicit knowledge of the sequence orders by the end of the
task (441), this may arise because such sequences become
automatized over time due to the large amount of practice
(152) and thus become represented in a different manner (22).
Although it is often suggested that this new representation is a
single motor action consisting of the individual elements (3),
we suggest that learning in this DSP task is more likely the
result of automatization of knowledge of the sequence order,
not of performance of the motor actions, as this paradigm was
intended to study.

Other sequence tasks

Aside from the four major categories described above, many
other variations on sequence-learning tasks have been used to
examine how the brain learns to perform a series of actions.
These paradigms include recalling the proper order in which
to grasp, pull, and turn handles or knobs on a device (455),
learning to estimate a time interval by filling that duration with
an idiosyncratic sequence of actions (224), or even perform-
ing activities of daily living that are subdivided into sequences
of steps (e.g., making a cup of tea). The study of linguistics
has also offered many interesting insights and frameworks
for understanding the sequential production of sounds and
words for speech production. This diversity of paradigms
has provided interesting insights regarding how sequences
are acquired and retained. Here we highlight a few of these
paradigms.

Among the simplest tasks are those that examine the inter-
action between two actions (168). These tasks, such as the
double-saccade task (29, 239, 453), investigate how perfor-
mance of one action influences the way in which another
action is completed. Hence, these tasks at heart are concerned
with the learning of a linked pair of actions where the com-
pletion of the first affects the transition to the second. In par-
ticular, the study of two-element movement sequences have
revealed that the second movement of the sequence may be
rapidly updated to account for any anticipated or observed
spatial errors arising during the first movement (488). This
implies that rather than all the elements of a movement
sequence chunk being prepared together and then simply
played out, the motor plans for subsequent movements may
be rapidly updated online as the sequence unfolds (see more
discussion on this in the section below “Organizing individ-
ual actions into sequences”). To some extent, these paradigms
come the closest to the study of continuous sequential actions
as they examine the interactions between the individual ele-
ments. As with other sequence-learning paradigms, however,
there is little evidence thus far that these elements ever become
merged into a single movement.

Another interesting variant of the sequence-learning
paradigm is the m x n task, devised by Okihide Hikosaka and
colleagues to compare differences in neural activity while

performing well-learned versus unfamiliar sequences of
actions (176, 177). In this task, sequences are organized into
“hypersets” that require n sets of m buttons to be pressed in a
particular order. For example, in a 2× 5 paradigm, monkeys
are offered a choice of two buttons that must be pressed in
a particular order; once correct, a new set of two buttons is
offered and this is repeated until the monkey has completed
five pairs of button presses. In a sense, a hyperset is a long
series of explicitly demarcated chunks; hence, this paradigm
can be considered a variant of the DSP task in its focus on
learning sub-chunks of discrete actions. By teaching hyper-
sets in this manner, monkeys can become extremely adept
at learning a large combination of actions, some of which
may even have overlapping chunks, making this paradigm an
intriguing one for studying the storage and retrieval of small
groupings of actions within longer sequences.

Finally, maze-solving paradigms provide a framework for
studying the learning of the sequential order of movement
elements such as discrete left/right/up/down actions in service
of attaining a broader task goal, that is, reaching a rewarding
location within the maze. This task is particularly powerful
for investigating how animals, in accordance with a set of
imposed task rules, are able to plan novel sequences of actions
to attain a goal, rather than simply executing overlearned
sequences in a rote manner. This is particularly true when
there are multiple solutions to solving the maze. Under such
conditions, monkeys are observed to preferentially select the
shortest path to reach the target (309, 310). Hence, unlike
other sequence tasks that require performance of over-learned
sequences of actions, maze-solving tasks allow for the study
of how de novo sequences of discrete actions are prepared.
These maze-solving tasks are quite explicitly cognitive in
nature, and may shed light on how individuals choose the
order of discrete events to be executed. Such tasks, however,
are only “motor” in the sense that movements are used to read
out these planned orderings of events, and hence these tasks
are quite far removed from the study of motor learning.

The role of practice in learning sequences
As with all investigations into the study of motor learning,
the primary focus of sequence-learning paradigms is to mea-
sure performance improvements with practice. In most tasks,
performance is assessed based on the overall time to com-
plete the sequence (or the average response time in an SRTT
paradigm) as well as the accuracy in selecting the correct
actions. Response time typically decreases in a roughly expo-
nential manner across a sequence-learning task (Fig. 11).
These response-time improvements are thought to arise from a
fundamental change in the neural representation of the action
sequence, although this may occur primarily at the level of the
perceptual-motor mapping. For example, one study examined
how sequences were learned by dissociating spatial cues from
motoric (key-press) sequences by varying the cue-press map-
ping, and training participants to learn either a spatial (fixed
order of cues) or a motoric (fixed order of finger presses)
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Figure 11 Sequence-specific and sequence-independent learning. (A) When learning a fixed
sequence of keypresses (filled circles), response times typically decrease with practice. In contrast,
rehearsal of random sequences (x’s) also exhibits some improvements in response time, although these
improvements are typically smaller. Figure panels reprinted from (322), with permission from Elsevier. (B)
Findings such as in (A) suggest that learning during sequence tasks can occur in two ways: improvement
of execution of the individual elements regardless of order (sequence-independent learning), and better
performance of the elements in a specific order (sequence-dependent learning; this includes knowledge
of the sequence). In SRTT tasks, insertion of a random-sequence block (R) toward the end of learning
is thought to be a way to distinguish these two forms of learning, although in practice this assay is
likely contaminated by additional cognitive influences such as changes in motivation and confidence
associated with the unexpected introduction of the random sequence.

sequence; the authors found that neither training scheme
transferred well to an SRTT task, suggesting that sequences
were not learned in a purely perceptual or motoric manner,
but were instead learned at the level of the stimulus-response
mapping (465).

Improvements in performance can also occur in between
practice sessions (off-line gains). That is, with a sufficiently
long break, not only is learning retained, but participants
may actually show practice-independent improvements upon
retesting (176, 245, 292, 345). This off-line phenomenon
is consistent with findings from other learning paradigms
(354, 426, 481) and is suggestive of the consolidation of
motor memory, although it is only partially influenced by
sleep (106, 318, 356, 412). Recent work, however, has called
into question the ability to modify learned motor sequences
through recall and additional practice (i.e., reconsolidation)
by showing that, contrary to predictions of the reconsolida-
tion theory, an existing memory of a learned sequence is not
disrupted when individuals retrieve the learned sequence but
then practice a novel sequence instead (159). This suggests
that some other mechanism may be responsible for the role
of offline gains other than reconsolidation. Nevertheless, the
gradual improvement in performance with consistent prac-
tice of the same sequence, as well as the presence of off-line
gains, suggest some form of long-term memory supporting
learning. As this is likely to be a process that is not specific to
the acquisition of sequences, the study of the role of practice
in sequence learning could reveal general principles of learn-
ing that can be applied more broadly to other forms of motor
and non-motor learning.

Organizing individual actions into sequences

Performing a motor sequence at short latency was initially
thought to occur through learning a chained series of the

actions (i.e., a discrete sequential order) (Fig. 12), in that the
consequence of each sequence element automatically trig-
gered the next element in a cascade of operantly condi-
tioned behaviors. Since operant conditioning depends upon
the repeated reinforcement of each stimulus-response pair
in the sequence, it is easy to imagine the response-time advan-
tage that sequentially linking stimulus-response pairs would
have over directly cuing each action individually. However,
a number of observations are inconsistent with this chaining
hypothesis. For one, sequences can be learned and executed
without feedback following each subsequent response (this is
a critical distinction between the SRTT and DSP tasks, in that
for the latter, participants are encouraged to rapidly execute
the entire sequence without waiting for feedback about the
correctness of the current action). Moreover, at sufficiently
low response times, each action would need to be cued by the
act of performing the previous action rather than by observing
its consequences (although it has in fact been proposed that
associations are learned between successive stimulus pairs or
successive response pairs (4)). Note that the original chain-
ing hypothesis could be modified to require only knowledge
of which action was previously executed (in a feed-forward
sense) rather than observing the consequences of that action.
However, this does not avoid the final inconsistency associ-
ated with this hypothesis, namely that one should be able to
start anywhere in the sequence and automatically trigger the
remainder of the sequence to be executed in order without
pause; instead, it has been shown that starting in the middle
of an action sequence is quite challenging (337).

Alternatively, it has been proposed that learning sequences
of actions relies upon the merging of individual elements
into a more encompassing, higher-level representation of
the sequence itself (Fig. 12). Specifically, as sequences are
learned, an abstract representation of the sequence order is
formed (for more discussion, see the section on “Implicit and
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Figure 12 Representations of learned action sequences. (A) According to the traditional ver-
sion of the simple chaining model, each element of a sequence is cued directly by the observable
outcome of the prior sequence element. Thus, cuing element A automatically leads to a series of
events that produces the remaining elements in the appropriate order (black arrows). This model
would predict that cuing an element in the middle of a sequence, such as element C, would
result in the execution of a partial sequence of all the remaining elements (blue dashed lines).
More recently, it has been suggested that these chains do not necessarily link observed outcomes
to action, but could be links that exist in the purely motor or stimulus domain. (B) The hierar-
chical model proposes that individual elements are organized into increasingly larger chunks
that ultimately are assembled into a single sequence representation. While individual chunks can
be cued, cuing element C in this case would not lead to a partial sequence since performance
of element C does not automatically trigger Chunk 2. (C) Previous research has suggested that
sequence chunks can be identified using variations in RT within a sequence. RTs between some
pairs of elements tend to be consistently longer than between other pairs, suggesting a hierarchi-
cal organization in which elements within a single sequence chunk are triggered together, with
additional preparation required between chunks. For example, in this figure, average response
times (normalized to baseline performance) are illustrated for each of four practice blocks across
a single sequence-learning session (block 1, filled circles; block 2, open squares; block 3, x’s;
block 4, filled triangles). Serial positions 5 and 8 have consistently prolonged RTs compared to
that of the other elements, and are suggestive of being the beginnings of two successive sequence
chunks. Figure panel reprinted from (322), with permission from Elsevier.

explicit forms of sequence learning” later). That is, rather than
representing each individual sequence element, a higher-level
representation of the entire sequence may emerge to allow for
a compact means of representing, planning, and recalling the
entire sequence of actions (see section below on Chunking).
In that way, the entire sequence of actions may be planned
in advance prior to the initiation of the first action, and then
executed in the order in which the individual elements were
planned. Indeed, the discrete sequence production (DSP) task
reveals that, once learned, an entire sequence of actions can
be cued by presenting only the first target stimulus of the
sequence. Two critical observations support this hierarchical-
learning hypothesis. First, the RT of the first movement tends
to increase with the length and number of unique elements in
the sequence (160, 168), at least for sequences of up to about
three to five elements. Second, execution of the initial move-
ment is modulated by subsequent movements, suggesting

that several movement elements may be planned together;
in two-element simple sequences, for example, the accuracy
with which the initial target is performed is modulated by the
accuracy level demanded in the subsequent movement (400).

This higher-level abstraction of the entire sequence does
not imply that once the sequence elements are planned, there
is no way to modify those individual plans as the sequence is
being executed. For example, actions that are performed later
in the sequence can be updated to account for errors generated
on earlier elements of the sequence. This effect is especially
clear in the double-saccade task, in which the second move-
ment of the sequence can be rapidly updated to account for
spatial errors arising during the first movement, even when
those errors cannot be directly observed (e.g., if the first sac-
cade is executed to the remembered location of the first target
rather than to a visible target location) (29). This finding
implies that even if all the elements of a movement sequence
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are prepared together before the first sequence element is exe-
cuted, the motor plans of the subsequent movements may be
revised as the sequence unfolds rather than simply playing out
as they were initially planned (488). Alternatively, whereas
the order of sequence elements is determined in advance,
exactly how the individual elements are executed may not
be fully planned before the first element in the sequence is
executed—that is, discrete sequences may not be planned as
a single executed movement in the same way that continuous
actions likely are.

Sequence-specific and sequence-independent
learning

There are clear benefits associated with performing actions
in specific sequences. Practice during sequence tasks can
have a sequence-specific performance benefit (Fig. 10B): a
well-rehearsed sequence can be performed at low response
times compared to novel or random sequences. However, a
second, sequence-independent effect can also be observed:
practice of the individual sequence elements, regardless of
sequence order, is sufficient to confer a performance advan-
tage when the elements are combined in a sequence. Indi-
viduals who practice in the random condition, which is often
used as a control when examining sequence learning behav-
ior, also exhibit some decreases in response time (322, 474)
(Fig. 11). In fact, in the SRTT paradigm, researchers seek to
account for this sequence-independent learning effect by com-
paring post-training response times for key presses between
sequence and random-order blocks (i.e., the S-R difference)
on a per-subject basis; the difference between sequence and
random blocks at the end of training is thought to reflect
sequence-dependent learning alone by removing sequence-
independent learning (although this difference may be con-
taminated by additional cognitive effects, see the section on
“Serial Reaction Time Task” earlier). Moreover, monkeys
performing the 2× 5 task not only exhibited faster response
times for well-rehearsed sequences, but also required fewer
trials to learn novel sequences as training progresses, sug-
gesting a meta-learning of the overall paradigm structure
and how to more quickly perform each individual selected
action (176). Finally, typists who were asked to practice typ-
ing a set of words that contained a specific set of letters
displayed a performance advantage when they typed new
words that included those rehearsed letters compared to words
formed from untrained letters (72). This performance transfer
to novel words in a sequence-independent manner suggests
that sequence-independent practice effects associated with
individual movement elements are quite robust, and need to
be distinguished from sequence-specific performance advan-
tages. Ironically, this sequence-independent learning arising
from practice—the aspect of sequence-learning paradigms
that is considered a contaminant and is not well studied—
may be the portion of these tasks that actually reflects motor
learning.

Hierarchical organization of sequences
One of the critical features of sequence learning is the
idea that once learned, individual sequence elements are no
longer represented and executed independently but are instead
grouped together (379) through a neural representation that
encompasses the activity associated with the collective set
of sequence elements. This representation can then be sim-
ply played back on demand (168). This notion was supported
by evidence that the RT for the first movement increases as
the number of subcomponents of the required action increase
(168, 417), suggesting that the entire ordered set of actions
may be recalled from memory before the first element is ini-
tiated. Thus instead of having to plan each individual move-
ment independently, the entire sequence of actions may be
executed as a single movement pattern because each future
discrete action and each transition between pairs of discrete
actions can be anticipated, and this ordering information is
retained in a buffer to facilitate rapid execution (20, 439).

Many sequences of actions, however, can be quite long
and complex, and there appears to be a finite capacity to
the ability to group multiple, individual movements into
a single set. Long sequences are often divided into short
response segments of about 3-7 elements (50, 295, 322, 370).
These sequence “chunks” are demarcated behaviorally by an
increase in response time compared to the response times
of subsequent elements within the chunk (370) (Fig. 12C);
this longer response time for the initial chunk element is
thought to represent pre-planning or recall of the entire chunk
to be executed (370, 439). However, more recently it has
been suggested that these changes in response time might
instead reflect idiosyncratic behaviors or biomechanical con-
straints rather than marking the organization of chunk struc-
tures (207). Nevertheless, to the extent that sequences are
organized into chunks, this organization is largely a means of
cognitively grouping elements into pieces to make the learn-
ing of a sequential order more tractable; there is currently little
evidence that individual actions become “chunked” together
at the motor level to form continuous actions.

The length of each chunk and the chunking structure of
a sequence may ultimately be determined by working mem-
ory capacity (42), and may in part be associated with the
extent to which information (in a mathematical sense) in a
sequence is best compressed (279). Regardless of how chunks
are determined, however, the use of chunks provides a way to
recall very long sequences in which the number of individ-
ual elements (but not the number of chunks) exceeds working
memory capacity (295). Similar use of a chunking representa-
tion facilitates expert recall of long lists of words or numbers,
dense street maps, or arrangements of chess pieces on a chess-
board (100).

Formation of sequence chunks

Chunking tends to occur by first learning simple transitions
between pairs of responses (93, 263, 336) (i.e., the smallest
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fragment of sequence order possible) as a form of associative
learning (4), although this remains to some degree stimulus-
dependent. This associative learning typically happens simply
through repetition of co-occurrence of the same groupings of
particular actions, and may be thought of as a form of statisti-
cal learning (339). As practice proceeds, however, it is thought
that longer sequence fragments are learned (52), which may
form the basis of sequence chunks. These sequence chunks
can then be executed relatively autonomously. That is, after
cuing the first response, the remaining actions are thought to
rapidly play out without requiring additional cues.

Since chunking tends to occur spontaneously, this organi-
zational structure presumably confers a performance advan-
tage. Indeed, it has been observed that new sequences formed
from the rearrangement of previously practiced individual
chunks in a different order, are performed more quickly com-
pared to random sequences (370), although they are not per-
formed as rapidly as the original sequence. This suggests that
participants not only learn the order of elements within a
chunk, but also learn about the order or transitions between
chunks (349). Chunking can even develop spontaneously
offline as the sequence is being consolidated (478). However,
when a less motorically optimal chunking structure is taught
initially, such as when a sequence is intentionally divided such
that breaks between chunks occur in the middle of runs and
trills (i.e., an alternation between two sequence elements),
that inefficient structure remains preserved despite long peri-
ods of practice of the entire sequence without an enforced
chunk structure (344). This observation again suggests that
chunking is largely a means of organizing an order of ele-
ments rather than optimizing their execution. Finally, learned
chunk structures are task-dependent. For example, rehearsing
two short, four-element sequences that occur with different
prevalence but share a single common pair of responses does
not necessarily mean that the consistently repeated pair of
actions will be chunked; instead, a response time advantage is
only observed during the well-rehearsed complete sequence
(336), perhaps because participants treated the entire four-
element sequence as a single chunk.

Importantly, as already alluded to above, the issue has
been raised of whether higher-order representations (i.e.,
chunks) of sequences are actually represented motorically
or if they only exist at a more abstract level. Lashley pro-
posed that higher-order representations reflect the order of
elements in an abstract sequence rather than the motoric
details of the individual elements themselves (256), consis-
tent with the argument that sequence learning is primarily
concerned with acquiring knowledge of the sequence order
rather than grouping simpler movements into continuous com-
plex actions. In support of this view, recent evidence has
suggested that sequences of finger actions can be learned
symbolically via color cues and then immediately applied
to saccadic eye movement sequences (415), arguing for
an abstract, effector-independent chunking representation.
Additionally, it has been suggested that simply observing a
sequence confers a performance benefit equivalent to actual

motor practice [(187); but see (462)], and that sequences that
resemble the training sequence either motorically or perceptu-
ally are performed better than novel sequences (103). Further-
more, rules about the sequence order can be transferred to new
sequences (i.e., analogical transfer) by changing the absolute
movement elements but preserving their relative relationships
in the sequence (i.e., a rule may be that the previous two ele-
ments in a sequence chunk repeat at the start of the next chunk,
but the exact identity of those elements may differ from one
sequence to another), suggesting a hierarchical representation
that is action independent but order dependent (84). Finally,
when participants are not given advance knowledge about the
number of elements in the sequence, the modulation of RT
consistent with development of a chunking structure is not
observed (227), again suggesting that chunking is largely a
cognitive strategy to organize individual sequence elements
into simpler, order-based representations. Hence, to the extent
that sequence learning can inform us about chunking and hier-
archical organization of action sequences, the majority of the
evidence suggests these grouping structures are likely to be
cognitive rather than execution related.

Indeed, some of the strongest evidence that chunking
occurs at the level of learning order and not at the level of
action execution comes from recent neuroimaging studies. If
sequence learning involves a grouping of discrete actions into
a single, continuous movement, one should expect to observe
the formation of a new representation for this novel con-
tinuous sequential action in motor cortex. However, recent
work has revealed that neural activity in M1 does not con-
tain any sequence representation but can instead be explained
by the activity required to produce the individual elements
of the sequence (484). Moreover, even after five weeks of
training, the representations of the individual fingers remain
consistent at every level of the motor hierarchy, despite learn-
ing to generate certain pairs of finger transitions at higher
frequency than other pairs (38). These findings again sug-
gest that sequence-learning tasks primarily probe the for-
mation of a cognitive organizational structure describing
sequence order, which then operates on unchanged single
motor elements for execution. Thus, chunking remains dis-
tinct from generating a single continuous movement such as
a tennis serve, in the sense that the knowledge of the order
rather than the actual constituent movements become repre-
sented as a single entity. Evidence of novel motor-execution-
related representations of specific, full sequences remains
elusive.

Once sequence chunks have been formed, this group-
ing process is thought to be repeated upon the chunks to
form a single, abstract representation of the entire sequence
(19,236,363). However, as this organizational process is pre-
sumed to be similar at each level of the hierarchy, research
efforts have remained focused on the initial chunking stage, or
have been restricted to the study of reasonably short sequences
of actions. Moreover, identifying these more abstract repre-
sentations and finding behavioral markers of their existence
remains challenging. The best evidence about the abstract
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nature of this hierarchical organization at the level of chunks
and beyond comes from studies of generalization.

Evidence of hierarchical organization:
Generalization

Generalization examines the ability to transfer learned perfor-
mance improvements to other effectors (e.g., the other hand)
or to novel but similar sequences. The finding that sequences
can generalize provides evidence that representations of entire
sequences are not movement-specific (66, 226, 330). This is
not surprising given the evidence reviewed in the previous
section indicating that the constituent chunks comprising a
sequence are already likely to be representations of order
rather than continuous motor actions. Even if that were
not the case, however, generalization would provide com-
pelling evidence that, at the highest levels of the organiza-
tional hierarchy, sequences are learned as cognitive represen-
tations of order. For example, individuals who are trained
to perform a sequence with one hand can perform the same
sequence much faster than a novel sequence using the oppo-
site hand (115, 137). This generalization benefit occurs when
the untrained hand performs the sequence in extrinsic coor-
dinates (e.g., the same buttons on a keyboard), but also can
be observed to a lesser extent in intrinsic coordinates (e.g.,
the same finger on the opposite hand) (137). This is consis-
tent with the finding that sequence representations in both
extrinsic and intrinsic coordinates can be observed in differ-
ent regions of the brain (458). Generalization of the chunk-
ing structure can be observed when individuals that were
trained to generate a sequence using three fingers on one
hand were subsequently asked to perform the same sequence
using a combination of fingers across both hands, or vice versa
(442). Finally, if participants switched their hand positions on
a keyboard so that different fingers were required to press
each key, performance of a sequence was maintained when
the sequence of key-presses was preserved but not when the
actual sequence of finger movements was preserved, provid-
ing strong evidence that the sequence was represented in an
effector-independent manner (467). In contrast, any sequence-
specific learning that remains movement-specific and does not
generalize could reflect learning about the mechanical inter-
actions (e.g., dynamics of the transitions) between the move-
ments required by each of the individual sequence elements.

At a more complex level, experimenters have exam-
ined intermanual generalization after learning bimanual
sequences. For example, Berner and Hoffmann examined
learning of a bimanual-bisequential SRTT task, in which each
hand performs a unique sequence simultaneously (34). They
demonstrated that although the two hands always practiced
the sequence simultaneously, each hand learned the sequence
independently to some extent; performance when one hand
performed the learned sequence and the other performed a ran-
dom sequence was still better than when both hands performed
random sequences. Moreover, some amount of intermanual
generalization also occurred when each hand simultaneously

performed the sequence learned by the other, arguing that the
two sequences were learned at least partially in an effector-
independent manner (34). However, more recent evidence
has shown little generalization from learning to perform two
simultaneous sequences bimanually to executing only one of
those sequences unimanually, suggesting that such tasks may
not simply be represented as a pair of unimanual sequences
but instead as an integrated whole involving coordination of
the two hands (485). Similarly, simultaneously learning a
visual and auditory sequence appears to generate an integrated
representation in which performance degrades if either the
visual or the auditory sequence is disrupted (174,380). While
these findings are suggestive of some effector or modality-
dependent components in sequence learning, the large amount
of successful generalization that has been observed across
multiple motor effectors and sensory modalities implicates
the largely cognitive nature of sequence representations.

Implicit and explicit forms of sequence learning

As we have discussed, a common assumption about sequence-
learning paradigms is that learning takes place in the motor
domain; that is, that sequence learning is in large part about
creating a single, implicit motor representation that encom-
passes the entire set (or chunk) of actions to be executed.
Thus, sequences are assumed to be executed as if they were
a continuous, sequential action, supporting the argument for
a parallel between the generation of motor sequences and
the control of muscle activations that occur during a single
action. Moreover, this has led to the general assumption that
the order of the individual elements is implicitly represented,
and not necessarily explicitly known. The logic, therefore is
that, if motor skill learning is largely implicit (or at least has
a significant implicit component; see the discussion in the
introduction to this review), and if motor-sequence-learning
paradigms are a reasonable model of motor skill learning,
then sequence learning must be implicit (or at least have a
significant implicit component). To that end, much effort has
been invested in trying to verify this assumption, seeking evi-
dence that sequence learning is not simply cognitive learning
of order combined with non-specific practice effects on indi-
vidual elements (299, 474). In our view, this endeavor has
been unsuccessful.

The idea that sequence learning is implicit arises from
two major lines of evidence. The first line includes stud-
ies demonstrating lack of awareness of the presence of a
sequence. For example, use of pharmaceutical interventions
that suppress sequence awareness in healthy individuals had
little measurable impact on their ability to learn the sequence
(323). In addition, studies involving patients with amnesia are
thought to be strong evidence of implicit sequence learning
because these patients have severe impairments in declara-
tive knowledge, and presumably can only acquire sequences
by relying on implicit learning (74, 322, 324, 351, 352)
(Fig. 13A). In one study, for example, the authors found
that although patients with Korsakoff’s syndrome generally
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Figure 13 Evidence for implicit and explicit sequence learning. (A) Response times of Korsakoff patients (filled circles,
who have declarative-memory impairments) and healthy age-matched controls (open circles) reveal that although patients
are in general slower, they can still learn to improve their response times during practice of a fixed sequence (blocks 1-4).
This improvement in response time is greater than that observed during rehearsal of random sequences (dashed lines, blocks
5-8). Neuropsychological findings such as this provided one piece of evidence supporting the assertion that sequence learn-
ing is implicit, as it does not require declarative memory. However, patients do not perform as well as controls in general,
and there is no definitive evidence that patients do not rely on declarative memory for trial-to-trial learning. Indeed, patients
with amnesia do retain the ability to report knowledge of sequence fragments (351,352). Panel reprinted from (322), with
permission from Elsevier. (B) Despite the presence of a secondary task, participants are able to improve their performance
of a first-order sequence. The extent of learning under dual-task conditions (measured by the S-R difference in block 11)
was found to be comparable to the S-R difference when the secondary task was removed (block 15), suggesting that the
secondary task had no impact on the extent of sequence learning that took place (i.e., that sequence learning does not
require attentional resources). However, the majority of learning that did occur under dual-task conditions appears to be
sequence-independent learning, as indicated by performance in the Random blocks. Panel reprinted, with permission, from
(75). (C) Wong and colleagues (474) contrasted practice of a fully explicit sequence (red diamonds; taught to participants
prior to training) and movements toward randomly appearing targets (blue circles). They observed an immediate improve-
ment in response time reflecting the explicit sequence knowledge, and gradual improvements with practice. Because the
learning rate of these gradual improvements did not differ between the sequence and the random groups, these practice-
related improvements in response time reflected sequence-independent learning; there was no evidence of any implicit
sequence-specific learning. Adapted, with permission, from (474).

exhibited slower response times compared to controls, both
patient and control groups exhibited gradual decreases in
response time during an SRTT task (322). Since these patients
have amnesia, it was assumed that they could not be learn-
ing the sequence explicitly; thus, this finding has been cited
as evidence that sequence learning is implicit. However, the
patients in this study did not learn or perform the task as well
as controls; the difference in response times between patients
and controls was larger during the sequence blocks compared
to random blocks, and keypress accuracy was worse overall
for patients regardless of whether there was a sequence or
not. A large part of sequence learning and execution may
therefore still rely on declarative memory. Additionally, as

noted in the introduction, if an amnesic patient learns a motor
task, this does not rule out the possibility that declarative
processes contributed to trial-to-trial learning. Hence, these
findings do not provide convincing evidence that sequence
learning is implicit. Finally, although patients were found to
have little ability to recognize or verbally report the sequence
order, control participants in many studies have demon-
strated a similar inability to report the sequence depending
on exactly how explicit knowledge of sequence order was
assayed (65, 66, 322, 372, 465). In fact, patients with amne-
sia can exhibit some fragmentary knowledge of the sequence
during verbal reporting (351,352), and when asked to predict
the next element in the sequence they perform comparably
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to controls and better than participants that only practiced
random sequences (351).

In a separate study, although there was no clear indi-
cation of a learning difference on an SRTT task between
amnesic patients and controls, these same patients were found
to exhibit impaired learning in a maze task, in which they
had to learn the sequence of turns to get through a maze
(324). After about 10 blocks, completion times plateaued for
patients but continued to decrease for controls. Why patients
with amnesia should be able to learn the order of simple fin-
ger presses but not the order of turns in a maze is something
of a puzzle. One suggestion is that although some sequence
tasks can be learned according to first-order associations, in
which it is possible to anticipate the likelihood of the next
action simply from the frequency of action pairs experienced
during training, patients are more impaired when it comes
to learning second-order associations because this stresses
the declarative system to a greater extent (74). Presumably,
navigating a maze requires knowledge of the current posi-
tion in the maze and not simply the identity of the previ-
ous turn, which makes this task analogous to the learning
of higher-order sequences. Hence, declarative memory may
be stressed more when learning complex sequence patterns.
Alternatively, statistical learning might support the learning of
simpler sequences under conditions when declarative mem-
ory is impaired (18,339), although statistical learning will not
give rise to a continuous motor action representation in the
way that implicit sequence learning is thought to do. Further-
more, admittedly at the risk of reverse inference, one imaging
study has suggested that the hippocampus is activated even
when participants express no awareness of the sequence to be
learned, suggesting that the hippocampus (and thus declar-
ative knowledge) may be important for learning sequences
even when explicit knowledge cannot be detected (376).

The second line of evidence regarding the implicit nature
of sequence learning comes from studies examining the role
of attention in the ability to learn sequences. This line of rea-
soning makes the assumption that implicit learning should
require minimal attentional resources and thus should pro-
ceed unhindered despite the presence of a distracting sec-
ondary task (66,113). While it has been found that dual tasks
tend to decrease performance in sequence-learning tasks com-
pared to individuals who are only performing the sequence
alone (323) (Fig. 13B), the S-R difference (between sequence
and random blocks) under dual-task conditions was compa-
rable to the difference assayed under subsequent single-task
conditions (75). This evidence has been used to argue that
attentional resources were not necessary to learn sequences.
However, the majority of improvements in this task actually
arose from sequence-independent rehearsal of the individual
movement elements based on measured performance in the
random condition. Additionally, to the extent that participants
learn sequence structure in a dual-task condition, most of that
sequence knowledge is acquired within the first block of trials
(113), suggesting that much of this sequence-specific learning
could be explicit. Finally, participants are really only capable

of learning first-order sequences well under dual-task condi-
tions (66), either because these sequences follow simple rules
that can be explicitly acquired or because participants rely
on statistical learning. In neither case is it likely that par-
ticipants ever implicitly acquire a representation of the full
sequence. Finally, the performance improvements in dual-
task conditions could easily arise from learning of the ability
to dual-task, rather than learning about the sequence per se.

Efforts to convincingly demonstrate attention-
independent learning in dual-task conditions have turned to
the use of probabilistic sequence learning tasks combined
with attentional distractors. Although participants use explicit
knowledge in the form of cues to learn the probability of
where the next target will appear, when those cues are
removed or when participants are placed under dual-task
conditions, some implicit sequence knowledge regarding the
likelihood of the next action is thought to remain (63,209). It
has thus been argued that sequence learning in this paradigm
is implicit. However, it has recently been demonstrated that
even when required to perform a dual-task symbol-counting
paradigm involving probabilistic sequence learning, partici-
pants acquire explicit knowledge as assayed by the ability to
intentionally generate patterns that match or do not match the
learned sequence (394). In fact, performance on these explicit
assays is indistinguishable between participants learning
under dual-task conditions and learning of the sequence
alone (394). This suggests that dual tasks, even those that
involve probabilistic sequence learning, are not effective at
eliminating the acquisition of explicit sequence knowledge.

The debate regarding whether participants acquire explicit
sequence knowledge—assayed through awareness, recall,
recognition, or the ability to generate or predict the next ele-
ment in the sequence—and the extent to which that knowl-
edge can account for observed sequence learning, has been
at the forefront of the sequence-learning field for quite some
time (65, 79, 337, 338, 372, 393, 463-465). It has been illus-
trated that if one probes carefully, there is always evidence for
explicit knowledge of the sequence order in most SRTT tasks.
Whether that knowledge is useful and contributes to sequence
learning has been debated, but it is undeniably compelling
that the time course of learning explicit sequence fragments
typically precedes or coincides with the time course of per-
formance improvements (52,128). In fact, spatial accuracy to
visually cued targets improves specifically for those move-
ment elements that were declaratively known in advance and
could therefore be anticipated; no performance changes were
found to precede the acquisition of declarative knowledge
(299). Moreover, attempts to dissociate explicit from implicit
learning processes by providing individuals with explicit
sequence knowledge in advance have revealed that all perfor-
mance improvements can be accounted for by the possession
of explicit knowledge and non-sequence-specific rehearsal of
the individual movement elements (474) (Fig. 13C). There-
fore, although many studies of sequence learning claim to
focus on implicit motor learning, sequence tasks appear to
be learned primarily at a cognitive level by acquiring explicit
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knowledge of the sequence order. Any implicit learning that
occurs might be accounted for by some form of learning
about the transitions between pairs of sequence elements
(e.g., statistical learning or potentially by learning the dynam-
ical transitions between elements), automatization of knowl-
edge that was initially learned in an explicit manner, or
sequence-independent improvements of the individual move-
ment elements. Even if there were convincing evidence for
implicit learning of sequence order, this is unlikely to relate
to merging of discrete elements into a single continuous action
representation.

Neural representations of sequences
Given the discussion above, we suggest that most neural
correlates of sequence learning pertain to representations of
sequence order. This is particularly true as most sequence
elements involve well-practiced actions like button-presses
or saccades, for which further improvement in the execu-
tion of the individual sequence elements is unlikely. Thus,
any detectable neural changes that occur during sequence-
learning paradigms employing such movements, after con-
trolling for sequence-independent learning, are likely to be
directly linked to learning the sequence order (although it is
important to also control for performance confounds associ-
ated with executing the sequence faster or more accurately).
Efforts in particular have been directed at searching for neu-
ral changes in motor cortices that correspond to the learning
of sequences with the hope of observing the formation of
representations of continuous action sequences. These inves-
tigations, however, have largely failed to identify any such
changes. While learning to link groups of preexisting move-
ment elements into novel action sequences has been found
to depend on having intact motor cortex in rats (224), the
primary motor cortex in primates may be necessary largely
to perform the requisite actions in the sequence rather than
to learn anything sequence specific (308). Indeed, it has been
difficult to find any learning-related changes associated with
neural activity in primary motor cortex in humans [see, e.g.,
(38, 484)]. This supports the view that sequence learning in
these paradigms occurs through improved cognitive represen-
tations of the sequence order rather than learning an inherently
motoric representation. While not the intended focus of efforts
to study implicit sequence learning and the formation of con-
tinuous sequential action representations, such cognitive rep-
resentations are nevertheless intriguing as an important aspect
of motor skill learning.

On a broader level, attempts have been made to apply neu-
roimaging to observe changes throughout the brain as healthy
individuals learn and execute sequences. Activity changes
have been noted in many brain regions spanning prefrontal
and premotor areas (136, 137), as well as subcortical areas
including the basal ganglia and cerebellum (Fig. 2). How-
ever, it is unclear whether learning-related activity in these
areas is best attributed to implicit (e.g., statistical) or explicit
(e.g., knowledge of order) sequence learning. Although some

studies have argued that distinct regions are engaged in
implicit versus explicit sequence learning (136,162,181,350,
371), other studies have argued for a partial or even a complete
overlap of regions involved (371, 466). This confusion arises
in part because of the difficulty in assaying whether sequence
learning can ever occur without an explicit component (see
section on Implicit and Explicit, above), or even whether any
implicit learning that arises is simply the automatization of
an explicitly learned element order. Thus, while sequence-
related changes in neural activity can be observed during
sequence-learning tasks, it is not possible to draw a distinction
between the neural correlates of implicit and explicit sequence
learning.

Cerebellar contributions to sequence learning

The role of the cerebellum in sequence learning is less clear
than its role in adaptation. For example, activity in the cere-
bellum has been observed to both increase (89) or decrease
(90-92, 109, 136, 206, 218, 434) as learning proceeds. Never-
theless, the cerebellum is thought to have a greater role than
simply supporting the execution of individual actions: unlike
healthy controls, patients with bilateral cerebellar lesions
exhibited no reaction-time advantage in generating each ele-
ment in a fixed sequence compared to performing each ele-
ment alone (197). Moreover, muscimol injections to inactivate
the dentate nucleus in monkeys led to an increase in errors
for well-learned sequences (265). Whether the cerebellum is
necessary for actually learning sequences, what it might con-
tribute to this process, and how these hypotheses relate to the
current view that the cerebellum computes sensory-prediction
errors, all remain unanswered questions.

The basal ganglia modulate sequence-specific
performance

Activity in the basal ganglia—particularly in the posterior
regions of the putamen—tends to increase as sequences are
learned. Using fMRI, it has been found that activity in the
putamen (i.e., in the sensorimotor regions of the basal ganglia)
is correlated with the performance of well-learned sequences
(23, 90, 91, 109, 218, 434). More rostral, association regions
of the basal ganglia have been implicated earlier in learning
(258). Consistent with these imaging studies, muscimol inac-
tivation of different regions of the basal ganglia in monkeys
appears to influence different stages during sequence learn-
ing paradigms: inactivation of the anterior caudate reduces the
ability to learn a sequence, whereas inactivation of the middle-
posterior putamen increases the number of errors made during
well-learned sequences (298). As with the cerebellum, how-
ever, it remains unclear exactly what the basal ganglia might
contribute to these processes.

One popular hypothesis is that the basal ganglia contribute
to the organization of individual elements into a sequence
and the automaticity with which those actions are performed.
Anterior regions of the putamen have been found to be active
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during the planning period before the first element of a
sequence is initiated (43, 98, 204). Additionally, while mice
learned to execute a sequence of lever presses, some neurons
in the basal ganglia were observed to increase or decrease
their firing rate at the beginning of the lever press sequence as
if they signaled the initiation of a chunk of actions, while other
neurons were excited throughout the entire sequence of lever
presses (210, 211). It is unclear, however, whether the basal
ganglia actually represent the learned sequence of presses or
if this activity simply signaled the onset of a movement period
that was expected to ultimately give rise to a reward, since
the mice did not appear to have perfected execution of the
four-press sequence. On the other hand, the basal ganglia has
been implicated in gating individual actions to regulate their
order (39), suggesting that the basal ganglia may control the
outflow of an action sequence that is determined elsewhere
rather than actually storing or driving execution of the entire
sequence.

Our understanding of the role of the basal ganglia in
sequence learning has been complicated by findings from
neuropsychological studies [see (88) for review]. These stud-
ies in large part suggest that explicit sequence learning ability
is preserved in patients despite having basal ganglia impair-
ments. For example, the ability to execute sequences cor-
relates with severity of symptoms of Parkinson’s disease,
but not with other measures such as cognitive impairments
or amount of dopaminergic medication (311). Patients with
Parkinson’s or Huntington’s disease are also able to verbalize
a learned sequence explicitly, despite having difficulty exe-
cuting it (90, 435). Finally, patients exhibit generalization of
learned sequences to the opposite hand (14). Together these
data suggest that explicit sequence learning remains intact
despite disruption to the basal ganglia. What remains unclear,
then, is why these patients should exhibit sequence-learning
impairments at all (401). One hint comes from the finding that
these patients perform worse compared to controls on a prob-
abilistic sequence task that probes statistical learning (460).
Thus, to the extent that there is any implicit learning occurring
in sequence-learning tasks, the basal ganglia may be impor-
tant for that process. Alternatively, basal-ganglia impairments
may lead to a failure to automatize explicitly learned sequence
orders, giving rise to difficulty in the maintenance and auto-
matic execution of whole sequences, or they may simply reg-
ulate the outflow of sequence elements according to an order
stored elsewhere, potentially in an explicit manner. Indeed,
a study in monkeys calls into question whether the basal
ganglia play a role in the execution and storage of motor
sequences (78).

The role of the basal ganglia in sequence learning per se
is further called into question by the fact that the basal gan-
glia are known to mediate intrinsic motivational state (284)
and knowledge of sequence order leads to sequence-specific
performance improvements by increasing motivation (474).
Hence, it remains possible that an apparent role for the basal
ganglia in learning and producing sequences may be con-
founded with motivational effects on execution.

The hippocampus supports fragmentary knowledge
of sequence order

It was originally believed that the hippocampus does not
participate in sequence learning, on the basis of studies
investigating sequence learning ability in patients with amne-
sia (74, 322, 324, 351, 352). However, more recent evidence
from neuroimaging studies has suggested that the hippocam-
pus is active not only when participants are explicitly aware
of the presence of a sequence, but also when participants are
not informed that a sequence exists (108, 376). In general,
activation of the hippocampus is observed to decrease as the
sequence is learned (108,136,357,376), although its strength
of activation during learning correlates with the magnitude of
offline gains that occur following consolidation (8, 9).

Evidence from these studies suggest that the role of the
hippocampus is likely to be in supporting the learning of asso-
ciations between nearby (e.g., first or second order) stimuli;
that is, in acquiring knowledge of sequence fragments. This
knowledge can then become automatized, and less declara-
tive, which could explain the gradual decrease in hippocam-
pal activity observed as learning progresses. In line with this
hypothesis, it has been demonstrated that the hippocampus is
more active when learning perceptual sequences, which are
likely more declarative (362). Additionally, the hippocampus
is more active for sequences that require knowledge of higher-
order associations (e.g., second-order sequences in which it
is necessary to know the prior two elements to predict the
next upcoming element, rather than simple pairwise associa-
tions) (74, 376). Finally, there is some evidence that activity
in the hippocampus actually increases very early in learn-
ing (108, 127), again suggesting its importance in associ-
ating small numbers of sequence elements together explic-
itly. Thus, the hippocampus appears to contribute to sequence
learning by supporting the acquisition of fragmentary sequen-
tial orders, which can then be chunked and consolidated into
higher-order sequence representations.

Learning-related activity in frontal regions

Another region that has received a lot of attention in sequence
learning is the supplementary motor area (SMA). Activity in
SMA tends to change as sequence learning proceeds (258).
Moreover, SMA is active during the planning period prior to
the execution of a sequence (43,98); thus, SMA is thought to
have a significant role in the planning and control of move-
ment sequences. In line with this, rTMS over SMA inter-
feres with the ability to accurately perform complex sequen-
tial keypresses (125). Additionally, SMA has been implicated
in performance of both saccadic and arm or finger sequences
(123, 206, 257, 308, 396), arguing that it serves an effector-
independent role in representing sequences. Finally, neural
activity in SMA appears to be sequence-specific; neurons
respond to particular actions only when they exist at partic-
ular positions within a sequence (308), suggesting its role in
maintaining a sequence-order representation.
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At the most anterior region of SMA is the pre-
supplementary motor area (preSMA). Unlike the SMA
proper, preSMA primarily projects forward to prefrontal areas
(27, 266, 431) rather than projecting back to primary motor
cortex or to spinal cord (95,164,266,280,431). preSMA tends
to be most active during the learning phase (176,177,314,370)
such as by responding before each chunk of the sequence in
an n×m task (175), but is less active once the sequence has
been learned (e.g., firing only before the entire hyperset but no
longer firing between chunks). In fact, inactivation of preSMA
causes increased errors when performing novel sequences but
has no impact on the execution of learned sequences (314).
In contrast, SMA is equally or more active during perfor-
mance of sequences that have already been learned compared
to during learning (176, 177, 314).

On a finer-grain scale, neural recordings have suggested
that SMA appears to encode the preparation of the next move-
ment to be executed (11, 254, 420), since activity reflecting,
for example, the second action in the sequence gradually
increases from the start of the sequence until the point when
the second element is to be executed (313). In contrast, neu-
ral activity in preSMA is modulated by the ordinal position
of a particular action within the movement sequence (198);
for example, neurons may respond to the second action dur-
ing sequence planning but their activity declines even before
the first sequence element has been completed (313). This
suggests that preSMA either serves as a memory buffer for
future actions in the sequence, or it assists in maintaining the
proper order of the sequence elements to be executed—both
particularly important for learning a sequence.

Neural activity within other frontal regions also has been
suggested to relate to sequence learning; however, these con-
tributions likely have little to do with motor learning. For
example, neurons in prefrontal cortex that fire just prior to
the execution of a particular element of a sequence also fire
during the preparatory period before any of the sequence has
been executed: during the preparatory period, prefrontal cor-
tex appears to simultaneously reflect all of the future sequence
elements that will be subsequently performed (309). Thus
frontal regions including SMA represent the order of the
whole sequence or of sequence chunks, which can in turn
be used to guide the execution of that sequence by motor
cortex element by element.

Summary: Sequence learning
Much effort has been focused on understanding how
sequences of discrete actions are learned. Sequence-learning
paradigms have provided a window into the manner in
which existing movement abilities can become organized in
a specific order [largely affecting goal selection (Fig. 1)],
how the brain may form compact cognitive representations
to chunk together groups of ordered actions, and how the
brain uncovers statistical regularities in the environment. It
remains unclear, however, how this work advances knowl-
edge about learning to execute complex continuous sequential

actions like a tennis serve or the sequence of muscle activa-
tions required for a simple reaching movement—the types of
behaviors that frequently inspire investigations into sequence
learning in the first place. Even in the case of fast sequenc-
ing of fingers on a keyboard, in which individuals learn to
eliminate any discrete intervals between the end of one finger
movement and the start of another, it is not clear that there is
more to these behaviors than the combination of knowledge
of the sequence order (which can become automatized and
implicit, and may become compactly represented as chunks)
and the ability to quickly select and perform the individ-
ual finger-movement elements; there currently exists no evi-
dence for a contribution of learning to better execute specific
transitions between fingers. Instead, sequence tasks primarily
inform us about the manner in which overlearned movements
can be rapidly selected for execution in the appropriate order,
such as rapidly typing one’s ATM number.

Sequence learning therefore remains a somewhat unsat-
isfactory model for learning of continuous motor skills. The
motor execution component in these tasks is, for the most
part, trivial or is already well learned. It is also challenging to
disambiguate the combination of explicit and implicit knowl-
edge that contributes to sequence learning; thus, the extent
to which sequence learning speaks to motor skill learning as
opposed to the cognitive learning of order remains unclear.
While the rapid action selection that emerges in sequence
learning is undoubtedly an important aspect of motor learn-
ing in general, we suggest that there are alternative paradigms
that better isolate this aspect of learning—which we discuss
in the section on “De Novo Learning.”

Motor Skill: De Novo Learning
As we discussed in the section on adaptation, in some sce-
narios motor learning requires us to adjust existing actions in
such a way as to recover performance of a previously mastered
skill. However, in most cases, acquiring a new skill requires
us to learn new ways to respond to incoming information
by selecting the appropriate action response, whether that is
information coming from the environment (e.g., the target has
moved) or from sensors within our body (e.g., my arm is not
where I expected it would be). In other words, we are often
required to learn a novel feedback controller from scratch
that changes how our actions are selected and executed, often
according to a particular task context (i.e., goal). Importantly,
this poses a very different challenge to acquiring skills by
adapting or repurposing an existing skill, for example, learn-
ing to use a tennis racket when one has already learned to use
a squash racket. Instead, it is necessary to assemble a brand
new skill de novo.

In the previous sections describing adaptation and
sequence learning, we have seen how the brain brings many
learning mechanisms to bear on the problem. These processes,
which, for instance, include explicit learning, are often viewed
as contaminants to our attempts to assess implicit adaptation
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Figure 14 Arbitrary visuomotor association learning. (A) In (21), participants were required to associate a
set of visual stimuli with specific finger presses. (B) Although the basic mapping was learned quickly, with prac-
tice, participants were able to reduce the reaction time needed to generate the correct response. Adapted from
(21); republished with permission of the Society for Neuroscience, permission conveyed through Copyright
Clearance Center, Inc.

or implicit learning of a movement sequence. We suggest that
many of these “contaminating” processes in adaptation and
sequence learning tasks are those which support the capacity
to learn entirely new and arbitrary policies. In this section,
we review paradigms that allow these processes to be stud-
ied in isolation, without contamination by processes such as
statistical learning and implicit recalibration.

Learning arbitrary visuomotor associations (AVMA)
In the simplest paradigm for investigating learning de novo,
subjects must learn an arbitrary association between a dis-
crete set of stimuli and a discrete set of actions (Fig. 14).
For instance, participants may learn to associate each of four
visual stimuli—perhaps colors or shapes—with each of four
different buttons on a keyboard. Performance in this task
can be assessed in two ways: either based on proportion of
responses that are accurate, or based on the speed of responses
(i.e., reaction time). More generally, performance level can be
assessed based on the speed-accuracy trade-off, that is, how
accuracy varies as a function of response time (157, 456).

Learning in this paradigm occurs in two distinct phases.
First, participants learn the association between stimuli and
actions. Depending on the number of associations to be
learned, this phase tends to proceed quite rapidly. It is known
to be highly cognitive and is dependent on the hippocampus,
premotor cortex, and parietal cortex (468). However, although
performance can be accurate at this stage, it is typically slow.
In the second phase of learning, participants practice the iden-
tified association, which leads to them being able to perform
the association at lower latency, while being less susceptible
to inference by a concurrently performed secondary task.

A consistent debate has been whether such learning is
truly visuomotor in nature, or merely visuospatial. That is, do
participants genuinely learn a mapping between visual stimuli
and actions (visuomotor), or do they learn a correspondence
between visual stimuli and spatial goals for movement (visu-
ospatial)? This seems to vary according to the task. In cases
where a set of visual stimuli are associated with arbitrary

gestures, patients with lesions to premotor cortex are unable
to learn the association, despite being able to successfully
produce each individual gesture through imitation. The same
patients, however, were relatively unimpaired when similar
stimuli were associated with pointing movements toward dif-
ferent targets (154). Thus, premotor cortex seems to be neces-
sary for learning pure visuomotor associations. Visuospatial
associations, however, can be learned independently of pre-
motor cortex. When a given task could be learned either as
a visuospatial or as a visuomotor association, visuospatial
associations seem to be favored. This dominance of visu-
ospatial learning is further supported by a study by Grol and
colleagues (140). They trained participants on a simple asso-
ciation between images and finger presses. After this initial
learning session, participants’ hands were pronated by 180◦,
and the symbol-key bindings were modified such that either
the fingers which needed to be pressed remained the same,
but the spatial location of the required keys was reversed, or
the key locations remained the same but had to be pushed
with a different finger. Participants coped better with this
postural adjustment when the spatial location of the required
key was preserved, rather than when the required finger was
preserved, suggesting they had represented the original task
visuospatially.

The amount of training provided to participants in arbi-
trary visuomotor association tasks varies widely. Many stud-
ies examine learning only within a single session, while other
studies track learning over much longer timescales. Even with
relatively simple associations, comprising just two to three
elements, reaction times can continue to improve over mul-
tiple days of practice (21, 139). Decreasing reaction time is
not the only way in which performance improves; practice
also leads to a reduction in the cognitive load associated with
the task. Shortly after learning a novel association, partici-
pants struggle to concurrently perform a cognitively demand-
ing secondary task (such as counting the number of vowels
among a sequence of auditory stimuli). Typically, however,
after around two to five days of practice (depending on the
tasks) they learn to perform both the association task and the
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secondary task without compromising performance in either
one (21, 139, 480).

Many of the phenomena observed in arbitrary visuomo-
tor associations is similar to what has been established in
sequence learning: practice leads to faster, more automatic
responding. Sequence learning can even be considered a vari-
ant of arbitrary association learning in which the cue is not
a visual stimulus but the preceding movement. Thus, the
AVMA paradigm likely captures the same salient features
that are of interest in highly practiced sequence tasks. Where
these tasks differ is that sequence learning involves the added
complexity of working memory constraints and chunking—
that is, they differ in the initial cognitive mechanisms of
acquisition. Thus, although AVMA learning shares many of
the limitations of sequence learning—for instance, execu-
tion of individual movements does not improve—it arguably
offers a more streamlined paradigm in which to study motor-
specific aspects of learning, namely the ability to rapidly gen-
erate appropriate motor output in response to specific events
or stimuli.

Also related to arbitrary visuomotor association learning
is the problem of category learning. Category learning typi-
cally involves learning a rule or mapping assigning different
stimuli to two or more different categories, much like we can
easily categorize images of cats versus dogs. Whereas AVMA
tasks draw from a finite number of stimuli, category-learning
tasks typically draw stimuli from a continuous space, with a
predefined boundary determining category membership. For
instance, the stimuli may be Gabor patches with differing
frequencies and differing orientations, and the membership
boundary might depend on both of these features. Although
category learning is often regarded as a perceptual prob-
lem, categorization decisions are typically expressed through
movement, for example, pushing one of two different but-
tons. Extensive training in categorization tasks often ends up
resembling learning of a stimulus-to-action policy, as evi-
denced by the fact that switching the buttons after the task
has been well-learned leads to persistent performance diffi-
culties (16, 167, 268). It is likely that category-learning tasks
engage very similar learning mechanisms to arbitrary visuo-
motor association learning, only with the added complexity
that the extent of cognitive involvement can depend on how
complex the decision boundary is (17).

Many brain regions have been implicated in learning arbi-
trary visuomotor associations. Lesion studies in humans and
non-human primates have implicated the hippocampus, pre-
frontal cortex, cerebellum, and the basal ganglia in initial
acquisition of arbitrary associations (468). The neural corre-
lates of long-term practice in these tasks are less clear. How-
ever, it has been suggested that overlearning of visuomotor
associations might reflect the emergence of novel stimulus-
response representations in the parietal cortex (139) and/or
the cerebellum (21), a shift to being represented within differ-
ent subregions of the striatum (15), or cortical computations
becoming independent of the striatum (166).

Learning of arbitrary continuous skills
Arbitrary associations between discrete sets of stimuli and
actions provide an elementary model of feedback learning.
Most real-world skills, however, are more complex and range
from generating sequences of actions over time to maneuver-
ing an object toward a desired goal. The relationship between
actions and their effects on the state of the world can often
be entirely arbitrary. For instance, when driving a car, press-
ing one pedal to accelerate the car, and pressing an adjacent
pedal to slow it down, is an entirely arbitrary control inter-
face. Changing the heading angle of the car using hand move-
ments on a steering wheel is also a very unnatural control
mechanism. We nevertheless master these types of control
and employ them effortlessly given sufficient instruction and
practice.

Adaptation tasks do not model this type of learning well
because they permit participants to learn by repurposing or
adapting existing controllers; thus these paradigms largely
influence action selection but not action execution. In con-
trast, de novo learning of continuous skills also requires that
individuals not only rapidly select a new response, but also
execute those responses well. As we have discussed in the
section on adaptation, the hallmark of adaptation is the exis-
tence of aftereffects—the original skill that was adapted or
repurposed inevitably suffers when we attempt to revert to
it. With de novo skill learning, by contrast, the new pol-
icy is assembled from scratch, without interfering with pre-
existing controllers. Consequently, it should be much eas-
ier to disengage a de novo learned controller and return to
using a baseline controller without experiencing unwanted
aftereffects.

A simple task that does not seem to be able to be solved
through implicit adaptation is the mirror-reversal paradigm
(Fig. 15), in which the visual field is inverted across a mirror-
ing axis. This type of extreme perturbation can be achieved
with motion tracking and a visual display, or by using special
prism goggles (133). A recent study by Telgen and colleagues
(426) highlighted a fundamental difference between how a
mirror-reversal is learned compared to a visuomotor rotation.
Critically, although participants responded well to the mirror-
reversal or the rotation when given sufficient time to act, when
they were forced to respond rapidly (prompted by an unex-
pected cursor jump mid-movement [Fig. 15C]), the initial
corrective response was the same as at baseline—not in the
appropriate, mirror-reversed direction (Fig. 15D). Therefore,
learning of the mirror-reversal was not expressed at low reac-
tion times [see also (138, 223)]. By contrast, it is known that
implicit recalibration, such as under an imposed visuomotor
rotation, is reflected in rapid feedback responses (6, 64, 426).
This difference suggests that these two perturbations were
learned via different mechanisms—presumably, adaptation in
the case of a rotation, and de novo learning in the case of the
mirror reversal. The longer time required to generate appropri-
ate movements under a mirror-reversal suggests reliance on
a cognitive mechanism. This cognitive component is likely
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Figure 15 Mirror reversal learning. (A) Mirror-reversal task in which cursor motion is reflected across
a mirroring axis. (B) Practice enables accurate compensation to be achieved at lower and lower reaction
times. (C) Feedback responses can be assessed by displacing the cursor midway through a movement
toward a target positioned on the midline. (D) Responses to target displacement early in learning (blue;
when movements are accurate, but require long reaction times) are similar to baseline (nonmirrored)
responses (black), rather than ideal responses (dashed black). Even after 2 days of practice, responses
fail to be appropriate for the mirror-reversal and are initially directed in the wrong direction (red). Adapted
from (426); republished with permission of the Society for Neuroscience, permission conveyed through
Copyright Clearance Center, Inc.

qualitatively similar to explicit components that contribute to
learning in adaptation paradigms, which are known to be sim-
ilarly time consuming (105, 149, 259) [in contrast to implicit
recalibration, which can be rapidly expressed (149,426)]. This
initial cognitive phase parallels that occurring during learn-
ing of an arbitrary visuomotor association. It is tempting to
speculate that further practice would ultimately allow appro-
priate feedback corrections to be generated at low latency in
the mirror-reversed condition; however, feedback responses
under mirror-reversal remain deficient even after 8 days of
continual exposure to reversing prism goggles (262). The
fundamental difference between learning to compensate for
mirror reversals compared to small rotations is underscored
by neurological dissociations. Patients with Parkinson’s dis-
ease and Huntington’s disease appear normal in their ability
to compensate for displacing prism goggles or for visuomotor
rotations (30,143,260,272); however these patients are strik-
ingly unable to compensate for mirror-reversed feedback in
a throwing task (143), suggesting a critical role for the basal
ganglia in de novo learning.

Related to mirror reversals are more extreme perturba-
tions such as 180◦ rotations. These extreme rotations are too
large to be solved by implicit recalibration, which, as we
discussed in the section on motor adaptation, seems to be
limited to compensating for relatively small (< 25◦) pertur-
bations (44, 301, 302). Indeed, it has often been noted that
the nature of compensation for a visuomotor rotation changes
qualitatively as the size of the rotation increases (2,301). 180◦

rotations actually arise naturally in many real-world tasks via
the fulcrum effect: when trying to manipulate the tip of a tool
that is fixed somewhere along its axis, the movements of the
tip of the tool will be rotated by 180◦ relative to movements
of the hand. This difficulty occurs, for example, in laparo-
scopic surgery (118), and can require substantial practice to
master (71).

In mirror-reversal learning, and in learning to counter
extreme rotations, the relationship between actions and out-
comes can be easily described to and understood by partici-
pants, which may aid performance. Indeed, participants cope
significantly better with mirror-reversed cursor feedback if the
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display depicts the mirror-reversal as arising from a simple
fulcrum (28). In mirror reversal, the newly learned action to
reach a target conflicts with baseline actions perpendicular to
the mirroring axis but is congruent to baseline actions along
the mirroring axis. This is very different from the scenario
that occurs when using thumb movements to play a video
game or arm movements to steer a bicycle: in those cases,
the underlying novel mappings are neither in conflict nor in
congruence with any pre-existing ones. It can therefore be dif-
ficult to interpret whether difficulty learning a mirror-reversal
is attributable to learning per se, or to resolving this conflict.

A number of other paradigms have challenged participants
to learn more complex, arbitrary mappings from actions to
outcomes. One example is the use of myoelectric interfaces,
in which activity of muscles, measured via EMG, is used to
control an on-screen cursor. The normal use of arm muscles
to control the arm naturally gives rise to a mapping from
muscle activity to a spatial location. It is possible to have
human participants control the location of an on-screen cur-
sor directly based on their muscle activity by simulating this
mapping from muscle activity to effector location (348,365).
The myoelectric interface, however, allows various distortions
to be simulated, such as weakening of a muscle. Much like in
a visuomotor rotation paradigm, participants appear to com-
pensate for these relatively minor perturbations by learning to
re-aim the cursor toward an alternative target (365). However,
this strategy is no longer possible in more extreme cases;
randomly permuting the roles of all the muscles involved
gives rise to a complex EMG-to-cursor mapping that can-
not be solved by adjusting pre-existing controllers. Instead,
it requires a change in which muscles are selected to per-
form each action. These tasks subsequently require a hon-
ing of movement accuracy by improving execution of the
selected actions. Thus given time, participants can learn to
successfully maneuver the cursor around the screen to navi-
gate between targets (348), demonstrating the flexible capa-
bilities of de novo learning. Another example is the use of a
cyberglove interface to control an on-screen cursor (Fig. 16).
Mosier and colleagues (304) used a cyberglove to record the
posture of the hand—a total of 19 degrees of freedom. These
19 degrees of freedom were mapped linearly onto a cursor

location on a 2-d screen. Participants learned to control a cur-
sor using this mapping over two to three sessions of practice.

Although it is unclear exactly how de novo tasks are
learned, there is likely to be a substantial cognitive compo-
nent. The control solution that participants acquire depends
strongly on the type of visual feedback they are provided. If
participants are shown only a cursor moving on a screen, they
learn to move the cursor along straight lines on the screen
(304). If, by contrast, the cursor is represented as the endpoint
of a simple two-link arm, participants learn to move the cur-
sor in a way that minimizes distance in terms of the changes
in joint angles of the two-link arm, despite the fact that the
mapping between hand posture and the cursor is identical in
either case (76). Thus, the control solution that participants
arrive at depends critically on how they cognitively conceive
the task.

An extreme example of a de novo learning task was devel-
oped by Fells and Hinton (102), in which both hand move-
ments and hand posture were used to adjust the characteristics
of an auditory tone. Through careful and precise movements,
it was possible to richly modulate the tone to generate speech-
like sounds. With sufficient practice, an expert user could
conduct full conversations using the glove. This complex and
arbitrary motor-to-auditory mapping was initially developed
as a tool to enable speech synthesis in persons otherwise
unable to speak. However, it beautifully demonstrates both
the kinds of complex, arbitrary skills that people are capable
of learning, as well as the complexity of speech itself.

De novo learning tasks need not be high dimensional to be
challenging to learn. An experiment by Roland Johansson and
colleagues (212) required participants to control a 2-d cursor
through a combination of squeezing or twisting a purpose-
built manipulandum. The participants showed a similar learn-
ing pattern of slowly converging on the ability to maneuver
the cursor in straight lines. Furthermore, participants were
able to learn two variations of this mapping in parallel, with
the second mapping corresponding to a 180◦ rotation applied
on top of the first mapping. Participants could easily switch
between these mappings, providing further evidence that the
mappings were learned by constructing a new controller in
each case rather than by updating existing controllers.
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Figure 16 A complex de novo learning task. (A) Hand posture is mapped onto a 2-d cursor position. (B) Initially, participants are
unable to effectively control the cursor but, with practice, become able to generate smooth, straight cursor trajectories. Adapted from (76);
republished with permission of the Society for Neuroscience, permission conveyed through Copyright Clearance Center, Inc.
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De novo learning of an arbitrary controller is also observ-
able in brain-machine interfaces (BMIs). Typically, these
devices extract a set of neural firing rates from an implanted
electrode, and use these activities to control an on-screen
cursor. A lot of work using brain-machine interfaces has
attempted to leverage “natural” patterns of brain activity to
achieve this, by identifying the patterns of neural activity that
a monkey uses to move its own hand, then using this to decode
activity after the hand is immobilized to drive movement of
an on-screen cursor or a robot arm. Errors in the decod-
ing process can be corrected using adaptive brain-machine
interfaces (391). It is also widely recognized, however, that
successful operation of a BMI device very much depends
on learning on the part of the subject also. As much as a
decoder can be adjusted to improve performance, the subject
can learn to adjust their control of the device—a process that
often improves incrementally over several days (121). Brain-
machine interfaces have thus emerged as an important exper-
imental tool for probing the characteristics of motor learning
(122, 132).

Recent work has suggested potential constraints on what
kinds of mappings can be learned de novo. In a BMI paradigm
in monkeys, Sadtler and colleagues (368) applied different
mappings from neural activity to cursor kinematics. The dif-
ficulty of learning to control the cursor location depended on
whether or not the required neural activity tended to occur dur-
ing natural behavior. If the required activity pattern was part
of the monkey’s neural “repertoire” and simply had to be gen-
erated under different circumstances than usual, the monkey
could learn to control the cursor relatively quickly. If, how-
ever, the interface required activity patterns that the monkey
did not normally generate, learning was much slower and less
complete. This finding illustrates the fact that de novo learn-
ing can encompass at least two distinct processes: (i) learn-
ing to select an existing action under different circumstances
than before, and (ii) broadening the repertoire of available
actions.

Relatively little is known about the neural basis of de novo
skill learning compared to other forms of learning. As dis-
cussed, studies on neurological patients have highlighted the
importance of the basal ganglia in this kind of learning.
Learning of a simple form of BMI control has also been
investigated in mice. Koralek and colleagues (242) trained
mice to use a neuroprosthetic device, which mapped activ-
ity of a small group of neurons to the pitch of an audi-
tory tone. The mice learned to control this pitch to obtain
food rewards. This learning process was found to depend
critically on corticostriatal plasticity. Interestingly, the exact
location of the neurons used to control the auditory cue
did not seem to be important; mice were equally capable
of controlling the tone using neurons in sensory cortex as
they were using neurons in motor areas (62). As these types
of paradigms continue to be explored, we may gain a bet-
ter understanding of the neural circuits that uniquely gov-
ern de novo learning in contrast to other forms of motor
learning.

Motor Skill: Motor Acuity
In the previous sections, we have described various paradigms
that primarily require learning of which action should be
selected: for example, to counter a systematic perturbation,
for insertion into a particular sequence order, or through asso-
ciation with a specific stimulus. In the final section of this
review, we focus on how an action, once selected, can be exe-
cuted with more accuracy and precision through practice. This
kind of motor learning has been much less studied in humans
than in animals. We will therefore begin by describing work
in non-human animals, which consequently means that there
will be more detail at the neural level than was described in
previous sections.

In the animal literature, motor-skill learning has mainly
been studied using prehension tasks (reaching and grasping).
Performance in these tasks can be quantified with either a
global measure of task success or with respect to move-
ment kinematics, with an emphasis on speed, accuracy (mean
error), precision (variable error), trajectory smoothness, and
trajectory stereotypy. In the rodent, a widely used task trains
the animal to reach through an aperture to grab a pellet off a
shelf or grasp a piece of pasta (Fig. 17A-D) (12,454). In mon-
keys, precision grip is trained by having the monkey remove
food pellets from food wells (Fig. 17E-J) (327, 328). In both
tasks, difficulty is progressively titrated by moving the pellet
further away in the rodent case, or decreasing the diame-
ter of the food well in the monkey case. Acuity improve-
ments are not limited to grasping, however; a seminal study
in monkeys tracked changes in planar reaching trajectories
over about a month of training and found that they became
less dispersed (more stereotypical) over time (124). Over-
all, however, behavioral studies that have placed an emphasis
on quantifying learning-related changes in the kinematics of
continuous movements are surprisingly rare.

There are several reasons for the relative paucity of stud-
ies that examine improvements in motor execution. First, as
we mention in the introduction, motor learning has largely
been studied from the standpoint of improvement at selecting
the right action (e.g., its direction, amplitude, or order in a
sequence) rather than changing the quality of action execu-
tion (e.g., reductions in variability). Second, a great advan-
tage of rodent and non-human primate work is the variety
of new tools that have become available to study learning-
induced changes in neural circuit structure and activity. Thus,
the majority of the work in animal models has focused on
neural substrate and has rested on the assumption that mea-
sures at the level of task success will suffice as a correlate of
the quality of movement execution. Third, many studies have
employed sequence-learning paradigms to study execution
components of motor skill learning (210,246,458). However,
as we have argued in the section on sequence learning, such
tasks do not provide a good model of the motor-execution
components of skill learning.

The lack of fine-grained behavioral analysis of prehen-
sion skill in animal models raises an important problem: more
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Figure 17 Examples of prehension tasks. (A-D) Vermicelli handling
task [adapted, with permission, from (12), Fig. 1]. A sequence of snap-
shots showing the task during one trial, from (A) the vermicelli piece
being dropped into a conveniently viewed part of the cage, (B) the rat
begins eating using an asymmetrical holding pattern, with the two paws
designated as “grasp” and “guide” ones, to (C and D) the two paws
moving together as the piece becomes shorter and digits become inter-
posed. (E) Food pellet retrieval task [adapted, with permission, from
(327), Fig. 1]. Monkeys retrieve a food-pallet from the apparatus, Plex-
iglas board (Klüver board) containing four small food wells with sizes
ranging from 9.5 to 25 mm. (F-J) A sequence of snapshots showing a
monkey retrieving a food pellet [with permission from (328), Fig. 2]:
(F) finger extension, (G) finger flexion, (H) finger flexion+wrist exten-
sion, (I) wrist extension, and (J) Forearm supination. Panels (E) and (F-J)
republished with permission of the Society for Neuroscience from (327)
and (328), respectively; permission conveyed through Copyright Clear-
ance Center, Inc.

global measures do not precisely characterize the basis of per-
formance improvements. For example, improvements in over-
all task success could be due to reduction in mean error or a
reduction in movement variability. This consequently makes
it very difficult to interpret anatomical and physiological

changes associated with improvements in global performance
measures. Even once the right behavioral variable has been
identified, the observed changes in neural circuits may cor-
relate with the changes in behavioral components but do not
necessarily explain how those changes were achieved.

Despite these caveats, rodent studies of prehension train-
ing have yielded much important information in recent years.
In particular, they make a good case that motor skill learning
is causally related to structural and physiological changes in
motor cortical areas. Early experiments in the rat showed
training-related increases in dendritic branching (arboriza-
tion) in both layer II-III and layer V of motor cortical neurons
contralateral to the reaching paw (124, 238, 469). Since these
early studies, it has been shown that these changes are tran-
sient, with a return to normal dendritic tree size, but without
concomitant loss of the skill itself (340). This implies that
increases in dendritic arborization are a marker of the learn-
ing process but are not themselves the cause of the improved
performance. A clue to what the skill trace might actually
be has come with the advent of studies using longitudinal
two-photon microscopy in mouse models, showing selective
turnover of individual spines on the dendrites of neurons that
project to the spinal cord (which are therefore considered
movement-relevant) over the course of motor learning. Specif-
ically, new spines are formed and retained, whereas an approx-
imately equal number of old ones are eliminated, keeping the
total number the same. Interestingly, some of the spines that
are eliminated correspond to inputs from inhibitory interneu-
rons (59), which is consistent with physiology that suggests
changes in cortical inhibitory/excitatory balance with skill
learning (340).

How should this exciting new work be interpreted? One
interpretation has been to simply conclude, assuming that
spines are proxies for synapses, that “motor skill learning
relies on the formation and selective maintenance of new
synapses within the motor cortex” (340). There is something
a bit unsatisfying about this conclusion, however, because we
are still left with the question of where is the whole motor
skill stored after learning? The very same question has been
asked, and partially answered, in mouse studies of memory
engrams (346). Specifically, it has now been shown in the
mouse that increases in spine density and increases in strength
at individual synapses of memory-relevant cells are not the
mechanism of memory storage. Rather, what seems to matter
is the pattern of connectivity within an ensemble of cells.
Indeed, in a revelatory experiment, weakening of synaptic
connections between the cells in a particular hippocampal
ensemble failed to abolish a specific memory, as it could
still be retrieved by direct optogenetic stimulation; that is,
the ensemble’s pattern of connections was intact even if the
strength of the connections was altered (367).

The distinction between the pattern of connections
between the cells in an ensemble and the strength of these
connections is likely to generalize to the case of motor-skill
learning and representation in motor cortex. In the case of
skilled prehension, primary motor cortex—the area that is

652 Volume 9, April 2019



JWBT335-c170043 JWBT335-CompPhys-3G-v1 Printer: Yet to Come April 24, 2019 10:23 8in×10.75in

Comprehensive Physiology Motor Learning

thought to be responsible for movement execution—is also
the locus for learning. This is not true for the prefrontal cor-
tex, basal ganglia and cerebellum, which are areas correlated
with motor learning by instruction, reward, and error, respec-
tively, but are not the origins of the motor commands that
express what has been learned in the moving limb (at least in
primates). One explanation as to why primary motor cortex,
and not other structures, is so important for such skills is that
improved skill requires the proper coordination of new com-
binations of muscle activations; as the motor cortex controls
muscles and forces, alterations supporting improvements in
skill must take place there. It is also intuitively appealing to
consider such combinations (or synergies) to emerge from the
pattern of connectivity from the cortex to descending path-
ways (329).

A lot is left out of this necessarily short and corticocentric
account of how motor skill execution can be improved through
practice. The importance of the inputs to motor cortex and the
type of output it has available to access the spinal cord will
also likely determine the degree of skill that can be developed
in any given species. In a fascinating example of this, it was
shown in a recent study that postnatal mice transiently possess
direct cortico-motorneuronal connections but these are then
eliminated. If this developmental elimination is prevented,
then the adults have markedly enhanced manual dexterity
compared to normal adult mice (141).

Many physiological studies of motor-skill learning have
placed an emphasis on changes in motor-cortical maps. Such
maps are constructed by applying a low-intensity current pulse
through a microelectrode at successive contiguous sites, and
seeing which effector this causes to move. Studies have shown
that training on prehension tasks leads to expansion of terri-
tory of the trained effector in motor cortical areas (233, 328).
Critically, however, the persistence of this expansion is not
necessary for retaining the motor skill (234, 300, 427)—an
observation that can be considered a physiological analog of
the normalization of dendritic arborization and spine density
discussed earlier. Overall, these studies of motor skill learning
suggest that the neural processes that operate in motor cortex
during the formation of a motor skill are different from those
that allow its retention and expression. A stark demonstration
of this separation was made in a study of motor-skill learn-
ing in rats that demonstrated the necessity of dopaminergic
projections to motor cortex from the ventral tegmental area
during skill acquisition; however, lesioning these projections
had no detrimental effect on performance once these skills
had been acquired (182).

What about skilled prehension in humans? Surpris-
ingly, studies of improvements in reaching and grasping are
almost nonexistent. As we state in the introduction, the vast
majority of motor learning studies, particularly in humans,
have focused on either adaptation or sequence learning—
paradigms that do not challenge motor execution, but rather
stress the need for rapid selection of movements that can
already be executed at ceiling levels. In support of this asser-
tion, a recent meta-analysis of 70 imaging studies of motor

learning in humans concluded that there was no converging
evidence for learning-related activation changes in contralat-
eral M1 (158). Clearly, one does not want to conclude than
humans do not need their primary motor cortex for expression
of motor skills but rather that learning of motor acuity is either
little studied or challenged by the adaptation and sequence-
learning tasks that dominated this meta-analysis. This con-
clusion in regard to sequence learning is supported by a very
recent study showing that even after 5 days of intense practice
in a finger sequencing task, there was little or no evidence for
a true sequence representation in M1, that is, M1 was not
making a new learned contribution to the task (484). Thus,
there are few human data that can be directly compared to the
rodent and non-human primate work on skilled prehension
discussed above.

A few paradigms have examined reduced variability of
movement in more abstract tasks. In a “skittles” paradigm,
participants had to “throw” a virtual ball on a string in such
a way that it knocked over a skittles while avoiding an inter-
vening obstacle (306, 307). The position and velocity of the
hand at the time of releasing the ball fully determines the
outcome of this task, and a particular subset positions and
velocities will be successful. Initially, participants had quite
variable and inaccurate release kinematics but, with prac-
tice, appropriately tuned their mean release state, reduced
the variability, and finally shaped their variability such that
the dimensions along which variability was greatest had little
impact on task performance. One caveat to this work, how-
ever, is that it is unclear how much of the variability reduction
is associated with improved capability of executing the cor-
rect actions through a later stage exploitation of the identified
solution, and how much of it is associated with initial, highly
variable exploration of the task space.

A recent study attempted to isolate acuity improvements
in execution through a task that required subjects to make
visually guided, continuous curved movements of the wrist
to guide a cursor through a U-shaped tube (arc-pointing task,
Fig. 18) (398). The movements were made to be curved for
two reasons. First, point-to-point reaching movements are
so well practiced in humans that they have limited dynamic
range for capturing practice effects across days. Second,
the curved movements required a sequence of joined sub-
movements and continuous feedback adjustments to navi-
gate the tube. Thus one could consider this task to be like
a tennis serve or throwing action—more difficult but nev-
ertheless continuous. Participants practiced the arc-pointing
task across five days. Motor-skill learning was assessed at
both the level of task success, defined as a shift in the
speed-accuracy trade-off function (SAF), and at the level
of trajectory kinematics. Improved performance at the task
level was mainly attributable to reductions in trial-to-trial tra-
jectory variability, with minimal changes in the mean. The
term “motor acuity” was coined to capture this reduction in
movement variability. Interestingly, the number of submove-
ments remained invariant, which speaks against chunking at
the motor level for continuous skill tasks. There was also
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Figure 18 The arc-pointing task [adapted, with permission, from (398)]. (A) A picture of experimental setup: the participant controls a
cursor on the screen via wrist flexion-extension and pronation-supination, and try to move the cursor in a clockwise direction through a
circular channel. A proreflex infrared camera tracks pointing direction of a reflective marker the participant wears on her index finger
proximal interphalangeal joint, projecting it as a cursor on the screen. (B) Representative trajectories before (day 1, top panel) and after (day
5, bottom panel) training. (C) Group-level performance before and after training. Proportion of within-channel movements as a function of
movement time (MT). The histogram shows the distribution of average MT.

evidence for improved feedback control with practice, which
likely contributed to the reduced movement variability. Both
the presence of submovements and feedback control argue
strongly against the idea that stereotypy was attributable to
feedforward replay of motor commands. In a follow-up fMRI
study, the same task was used to investigate neural corre-
lates of improvements in motor acuity. Notably, learning-
related activation changes, controlling for performance level,
were found in the contralateral premotor and primary motor
cortex and the ipsilateral cerebellum (399). Thus, as sus-
pected, when learning was emphasized at the level of execu-
tion, changes were seen in contralateral motor cortical areas,
just as has been described in animal models of motor skill
learning.

The motor learning field does not yet possess an ade-
quate computational model for practice-induced increases in
motor acuity. The models discussed in other parts of this
review instead speak to how an average movement is con-
verged upon and properly selected. They do not address how
execution of the selected action then improves with subse-
quent practice. We also do not know precisely which neural
changes are responsible for increased motor acuity, either
structurally or physiologically. As we have already discussed,
neither expansions in cortical maps nor changes in spine den-
sity appear to be necessary for motor skill expression. It is
not clear that just finding correlations between any kind of
structural change in neural substrate and improved behavioral
performance will lead to the kind of understanding we are
looking for (248). Improvements in motor acuity that occur

with practice may be driven by increased signal-to-noise ratio
in motor cortical representations (220) and better feedback
control, as suggested by the evidence presented above. These
cortical changes are perhaps aided by improved state estima-
tion by forward models, possibly in the cerebellum (387). It
has been proposed that unsupervised or statistical learning is
the algorithm used by cortex (87). At this point, however, we
cannot go much beyond informed conjectures about the kind
of motor learning that most people associate with the word
colloquially, that is, improvements in execution quality of a
continuous motor skill.

Expertise
This review has focused on motor learning, and, arguably, the
ultimate example of motor learning can be seen in elite sports,
with athletes who have trained for years to maximize their
performance. It is likely, however, that the bulk of the time
required to become an expert in sport is actually dominated
by improvement of its cognitive components, rather than by
improved motor execution. This conclusion is supported by
the fact that chess, sports, and music require similar amounts
of deliberate practice to achieve expertise, even though there
is obviously no sensorimotor skill component to chess. What
these tasks do share, however, is the need to develop cognitive
strategies. An expert tennis player analyzes the game of their
opponent before and during the match and then comes up with
a game plan that extends across games and sets.
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Another likely reason that certain motor tasks take years to
gain expertise in is the number of interacting factors that must
be taken into account before any given movement is executed.
For example, in tennis, stroke selection and body movement
will vary depending on the court surface, wind conditions,
humidity effects on the ball, and levels of sun and shadow.
This complexity leads to a combinatorial explosion, akin to the
possibilities in chess, resulting in a large, multidimensional
space, and optimal actions must be found for each state in it.

It appears then that one can distinguish between two
results of extended practice: better strategy development and
action choice versus improved execution and more rapid
selection of a chosen action. This distinction has also been
described as the difference between executing a given strat-
egy more quickly (skill) versus coming up with qualita-
tively different strategies (expertise) (40). Anders Ericsson
(whose seminal work inspired the somewhat inaccurate, pop-
journalistic “10,000 hours rule”), makes a similar distinction
when he states: “With deliberate practice, however, the goal is
not just to reach your potential but to build it, to make things
possible that were not possible before (100).” This quanti-
tative versus qualitative distinction is often reiterated but its
importance to the neuroscience of motor learning is perhaps
less appreciated.

The importance of cognition has been a recurring theme
across almost all the varieties of motor learning we have dis-
cussed in this review, and thus it should not be surprising for
it to also be important in expertise. In our view, the need to
identify novel ways of solving the task, rather simply opti-
mizing an existing approach, means that expertise, whether
in motor or non-motor domains (e.g. chess or mathematics) is
likely to depend critically on more general executive, mem-
ory, and cognitive control capacities. Therefore, cognitive pro-
cesses should ultimately not be excluded from the definition
of motor learning, but rather should be considered integral to
our capacity for malleable and sophisticated movement skills.

Conclusion
In this review, we have attempted to survey the current exper-
imental and theoretical landscape of motor learning. Our
emphasis has been on characterizing the component behav-
iors that are probed by the tasks most frequently chosen by
neuroscientists and psychologists in the field, namely those
that fall into the categories of goal selection, action selection,
and action execution (Fig. 1), with the term “motor learning”
used in an inclusive sense in so much that we covered work
that is consistently self-described as being about motor learn-
ing. The categories discussed (motor adaptation, sequence
learning, de novo learning, and motor acuity) were primarily
organized around the paradigms used to probe motor learn-
ing, however, it is likely that the underlying processes that
support learning in these tasks in many cases overlap, likely
because they modify common stages along the motor planning
pathway.

Adaptation paradigms, for instance, can be viewed as
posing a recalibration problem, and learning in adaptation
tasks indeed seems to be partially supported by a cerebellum-
dependent learning process that enables recalibration of
movements. However, adaptation tasks can also be consid-
ered a kind of arbitrary visuomotor association—in reaching
tasks, for instance, participants must learn to associate a dif-
ferent action with each possible target location. It is there-
fore unsurprising that many different learning processes also
participate in helping to learn to counter the perturbation.
Sequence tasks, like adaptation tasks, are also likely to be
supported by multiple learning processes, although, unlike
recalibration in adaptation tasks, sequence learning may not
isolate any purely motoric phenomenon of interest. Instead,
the notion of sequences, at least in the motoric sense, can
perhaps be subsumed under the more basic components of
skill: fast action selection and accurate execution of individ-
ual actions, which were covered in the sections on de novo
learning and motor acuity, respectively.

In addition to adaptation and sequence learning, we have
discussed de novo learning—the construction of new con-
trollers, which become automatized through practice—and
improving motor acuity—increasing the speed and precision
of execution of a selected action. These forms of learning have
been relatively less well studied, and their neural basis less
well characterized. We suggest that approaches that empha-
size these forms of learning will provide a better foundation
for the study of motor skill learning.
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362. Rose M, Haider H, Salari N, Büchel C. Functional dissociation of
hippocampal mechanism during implicit learning based on the domain
of associations. J Neurosci 31: 13739-13745, 2011.

363. Rosenbaum DA, Kenny SB, Derr MA. Hierarchical control of rapid
movement sequences. J Exp Psychol Hum Percept Perform 9: 86-102,
1983.

364. Roy S, Park NW. Dissociating the memory systems mediating complex
tool knowledge and skills. Neuropsychologia 48: 3026-3036, 2010.

Volume 9, April 2019 661



JWBT335-c170043 JWBT335-CompPhys-3G-v1 Printer: Yet to Come April 24, 2019 10:23 8in×10.75in

Motor Learning Comprehensive Physiology

365. de Rugy A, Loeb GE, Carroll TJ. Muscle coordination is habitual rather
than optimal. J Neurosci 32: 7384-7391, 2012.

366. Rusted J, Sheppard L. Action-based memory in Alzheimer’s disease:
A longitudinal look at tea making. Neurocase 8: 111-126, 2002.

367. Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S. Memory.
Engram cells retain memory under retrograde amnesia. Science 348:
1007-1013, 2015.

368. Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara
EC, Yu BM, Batista AP. Neural constraints on learning. Nature 512:
423-426, 2014.

369. Sainburg RL, Ghez C, Kalakanis D. Intersegmental dynamics are con-
trolled by sequential anticipatory, error correction, and postural mech-
anisms. J Neurophysiol 81: 1045-1056, 1999.

370. Sakai K, Kitaguchi K, Hikosaka O. Chunking during human visuomotor
sequence learning. Exp Brain Res 152: 229-242, 2003.

371. Sami S, Robertson EM, Miall RC. The time course of task-specific
memory consolidation effects in resting state networks. J Neurosci 34:
3982-3992, 2014.

372. Sanchez DJ, Gobel EW, Reber PJ. Performing the unexplainable:
Implicit task performance reveals individually reliable sequence learn-
ing without explicit knowledge. Psychon Bull Rev 17: 790-796, 2010.

373. Schaefer SY, Shelly IL, Thoroughman KA. Beside the point: Motor
adaptation without feedback-based error correction in task-irrelevant
conditions. J Neurophysiol 107: 1247-1256, 2012.

374. Scheidt RA, Dingwell JB, Mussa-Ivaldi FA. Learning to move amid
uncertainty. J Neurophysiol 86: 971-985, 2001.

375. Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi
FA. Persistence of motor adaptation during constrained, multi-joint, arm
movements. J Neurophysiol 84: 853-862, 2000.

376. Schendan HE, Searl MM, Melrose RJ, Stern CE. An FMRI study of
the role of the medial temporal lobe in implicit and explicit sequence
learning. Neuron 37: 1013-1025, 2003.

377. Schlerf J, Ivry RB, Diedrichsen J. Encoding of sensory prediction errors
in the human cerebellum. J Neurosci 32: 4913-4922, 2012.

378. Schlerf JE, Xu J, Klemfuss NM, Griffiths TL, Ivry RB. Individuals with
cerebellar degeneration show similar adaptation deficits with large and
small visuomotor errors. J Neurophysiol 109: 1164-1173, 2013.

379. Schmidt R. The acquisition of skill: Some modifications to the
perception-action relationship through practice. In: Perspectives on Per-
ception and Action. New York: Routledge, 1987.

380. Schmidtke V, Heuer H. Task integration as a factor in secondary-task
effects on sequence learning. Psychol Res 60: 53-71, 1997.

381. Schvaneveldt RW, Gomez RL. Attention and probabilistic sequence
learning. Psychol Res 61: 175-190, 1998.

382. Schween R, Taube W, Gollhofer A, Leukel C. Online and post-trial
feedback differentially affect implicit adaptation to a visuomotor rota-
tion. Exp Brain Res 232: 3007-3013, 2014.

383. Seidler RD. Aging affects motor learning but not savings at transfer of
learning. Learn Mem 14: 17-21, 2007.

384. Seidler RD, Noll DC, Chintalapati P. Bilateral basal ganglia activation
associated with sensorimotor adaptation. Exp Brain Res 175: 544-555,
2006.

385. Shadmehr R. Generalization as a behavioral window to the neural mech-
anisms of learning internal models. Hum Mov Sci 23: 543-568, 2004.

386. Shadmehr R, Holcomb HH. Neural correlates of motor memory con-
solidation. Science 277: 821-825, 1997.

387. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor
control. Exp Brain Res 185: 359-381, 2008.

388. Shadmehr R, Moussavi ZMK. Spatial generalization from learning
dynamics of reaching movements. J Neurosci 20: 7807-7815, 2000.

389. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics
during learning of a motor task. J Neurosci 14: 3208-3224, 1994.

390. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory pre-
diction, and adaptation in motor control. Annu Rev Neurosci 33: 89-108,
2010.

391. Shanechi MM, Orsborn AL, Carmena JM. Robust brain-machine inter-
face design using optimal feedback control modeling and adaptive point
process filtering. PLOS Comput Biol 12: e1004730, 2016.

392. Shanks DR. Implicit learning. In: Handbook of Cognition. London:
SAGE, 2004.

393. Shanks DR, Johnstone T. Evaluating the relationship between explicit
and implicit knowledge in a sequential reaction time task. J Exp Psychol
Learn Mem Cogn 25: 1435-51, 1999.

394. Shanks DR, Rowland LA, Ranger MS. Attentional load and implicit
sequence learning. Psychol Res 69: 369-382, 2005.

395. Sheahan HR, Franklin DW, Wolpert DM. Motor planning, not execu-
tion, separates motor memories. Neuron 92: 773-779, 2016.

396. Shima K, Tanji J. Neuronal activity in the supplementary and presupple-
mentary motor areas for temporal organization of multiple movements.
J Neurophysiol 84: 2148-2160, 2000.

397. Shmuelof L, Huang VS, Haith AM, Delnicki RJ, Mazzoni P, Krakauer
JW. Overcoming motor “forgetting” through reinforcement of learned
actions. J Neurosci 32: 14617-14621a, 2012.

398. Shmuelof L, Krakauer JW, Mazzoni P. How is a motor skill learned?
Change and invariance at the levels of task success and trajectory con-
trol. J Neurophysiol 108: 578-594, 2012.

399. Shmuelof L, Yang J, Caffo B, Mazzoni P, Krakauer JW. The neural
correlates of learned motor acuity. J Neurophysiol 112: 971-980, 2014.

400. Sidaway B, Sekiya H, Fairweather M. Movement variability as a
function of accuracy demand in programmed serial aiming responses.
J Motor Behav 27: 67-76, 1995.

401. Siegert RJ, Taylor KD, Weatherall M, Abernethy DA. Is implicit
sequence learning impaired in Parkinson’s disease? A meta-analysis.
Neuropsychology 20: 490-495, 2006.

402. Sing GC, Joiner WM, Nanayakkara T, Brayanov JB, Smith MA. Prim-
itives for motor adaptation reflect correlated neural tuning to position
and velocity. Neuron 64: 575-589, 2009.

403. Sing GC, Najafi B, Adewuyi A, Smith MA. A novel mechanism for
the spacing effect: Competitive inhibition between adaptive processes
can explain the increase in motor skill retention associated with pro-
longed inter-trial spacing [Online]. Advances in Computational Motor
Control. Chicago: 2009. http://acmc.conference.googlepages.com/
2009SingNajafi.pdf.

404. Sing GC, Orozco SP, Smith MA. Limb motion dictates how motor
learning arises from arbitrary environmental dynamics. J Neurophysiol
109: 2466-2482, 2013.

405. Sing GC, Smith MA. Reduction in learning rates associated with
anterograde interference results from interactions between different
timescales in motor adaptation. PLOS Comput Biol 6: e1000893, 2010.

406. Skinner BF. Selection by consequences. Science 213: 501-504, 1981.
407. Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes

with different timescales underlie short-term motor learning. PLoS Biol
4: e179, 2006.

408. Smith MA, Shadmehr R. Intact ability to learn internal models of
arm dynamics in Huntington’s disease but not cerebellar degeneration.
J Neurophysiol 93: 2809-2821, 2005.

409. Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the ocu-
lomotor vermis of the cerebellum: A vectorial error signal for saccade
motor learning? J Neurophysiol 100: 1949-1966, 2008.

410. Sokolov AA, Miall RC, Ivry RB. The cerebellum: Adaptive prediction
for movement and cognition. Trends Cogn Sci 21: 313-332, 2017.

411. Song S, Howard JH, Howard DV. Implicit probabilistic sequence learn-
ing is independent of explicit awareness. Learn Mem 14: 167-176,
2007.

412. Song S, Howard JH, Howard DV. Sleep does not benefit probabilistic
motor sequence learning. J Neurosci 27: 12475-12483, 2007.

413. Squire LR. Memory systems of the brain: A brief history and current
perspective. Neurobiol Learn Mem 82: 171-177, 2004.

414. Squire LR, Zola SM. Structure and function of declarative and non-
declarative memory systems. PNAS 93: 13515-13522, 1996.

415. Stainer MJ, Carpenter RHS, Brotchie P, Anderson AJ. Sequences show
rapid motor transfer and spatial translation in the oculomotor system.
Vision Res 124: 1-6, 2016.

416. Stanley J, Krakauer JW. Motor skill depends on knowledge of facts.
Front Hum Neurosci 7: 503, 2013.

417. Sternberg S, Monsell S, Knoll RL, Wright CE, Stelmach GE. The
latency and duration of rapid movement sequences: Comparisons of
speech and typewriting. In: Stelmach GE, editor. Information process-
ing in motor control and learning. New York: Academic Press, Inc.,
1978, pp. 117-152.

418. Sutton R, Barto A. Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

419. Takahashi CD, Scheidt RA, Reinkensmeyer DJ. Impedance control
and internal model formation when reaching in a randomly varying
dynamical environment. J Neurophysiol 86: 1047-1051, 2001.

420. Tanji J, Okano K, Sato KC. Neuronal activity in cortical motor areas
related to ipsilateral, contralateral, and bilateral digit movements of the
monkey. J Neurophysiol 60: 325-343, 1988.

421. Taylor JA, Ivry RB. Flexible cognitive strategies during motor learning.
PLOS Comput Biol 7: e1001096, 2011.

422. Taylor JA, Ivry RB. The role of strategies in motor learning. Ann N Y
Acad Sci 1251: 1-12, 2012.

423. Taylor JA, Klemfuss NM, Ivry RB. An explicit strategy prevails when
the cerebellum fails to compute movement errors. Cerebellum 9: 580-
586, 2010.

424. Taylor JA, Krakauer JW, Ivry RB. Explicit and implicit contributions to
learning in a sensorimotor adaptation task. J Neurosci 34: 3023-3032,
2014.

425. Taylor JA, Wojaczynski GJ, Ivry RB. Trial-by-trial analysis of inter-
manual transfer during visuomotor adaptation. J Neurophysiol 106:
3157-3172, 2011.

426. Telgen S, Parvin D, Diedrichsen J. Mirror reversal and visual rotation
are learned and consolidated via separate mechanisms: Recalibrating
or learning de novo? J Neurosci 34: 13768-13779, 2014.

427. Tennant KA, Adkins DL, Scalco MD, Donlan NA, Asay AL, Thomas N,
Kleim JA, Jones TA. Skill learning induced plasticity of motor cortical

662 Volume 9, April 2019



JWBT335-c170043 JWBT335-CompPhys-3G-v1 Printer: Yet to Come April 24, 2019 10:23 8in×10.75in

Comprehensive Physiology Motor Learning

representations is time and age-dependent. Neurobiol Learn Mem 98:
291-302, 2012.

428. Therrien AS, Wolpert DM, Bastian AJ. Effective reinforcement learn-
ing following cerebellar damage requires a balance between explo-
ration and motor noise. Brain 139: 101-104, December 1, 2015. doi:
10.1093/brain/awv329.

429. Thoroughman KA, Shadmehr R. Learning of action through adaptive
combination of motor primitives. Nature 407: 742, 2000.

430. Timmann D, Horak F. Perturbed step initiation in cerebellar subjects: 2.
Modification of anticipatory postural adjustments. Exp Brain Res 141:
110-120, 2001.

431. Tokuno H, Tanji J. Input organization of distal and proximal forelimb
areas in the monkey primary motor cortex: A retrograde double labeling
study. J Comp Neurol 333: 199-209, 1993.

432. Tseng Y, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sen-
sory prediction errors drive cerebellum-dependent adaptation of reach-
ing. J Neurophysiol 98: 54-62, 2007.

433. Turnham EJ, Braun DA, Wolpert DM. Facilitation of learning induced
by both random and gradual visuomotor task variation. J Neurophysiol
107: 1111-1122, 2012.

434. Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during
motor skill learning. Neurobiol Learn Mem 78: 553-564, 2002.

435. Vakil E, Kahan S, Huberman M, Osimani A. Motor and non-motor
sequence learning in patients with basal ganglia lesions: The case of
serial reaction time (SRT). Neuropsychologia 38: 1-10, 2000.

436. Vaswani PA, Shadmehr R. Decay of motor memories in the absence of
error. J Neurosci 33: 7700-7709, 2013.

437. Vaswani PA, Shmuelof L, Haith AM, Delnicki RJ, Huang VS, Mazzoni
P, Shadmehr R, Krakauer JW. Persistent residual errors in motor adap-
tation tasks: Reversion to baseline and exploratory escape. J Neurosci
35: 6969-6977, 2015.

438. Verwey WB. Effects of extended practice in a one-finger keypressing
task. Acta Psychol (Amst) 84: 179-197, 1993.

439. Verwey WB. Buffer loading and chunking in sequential keypressing.
J Exp Psychol Hum Percept Perform 22: 544-562, 1996.

440. Verwey WB. Concatenating familiar movement sequences: The versa-
tile cognitive processor. Acta Psychol (Amst) 106: 69-95, 2001.

441. Verwey WB, Abrahamse EL, De Kleine E. Cognitive processing in new
and practiced discrete keying sequences. Front Psychol 1: 32, 2010.

442. Verwey WB, Wright DL. Effector-independent and effector-dependent
learning in the discrete sequence production task. Psychol Res 68: 64-
70, 2004.

443. van der Vliet R, Frens MA, de Vreede L, Jonker Z, Ribbers GM, Selles
RW, van der Geest J, Donchin O. Individual differences in motor noise
and adaptation rate are optimally related. eNeuro 5(4), 2018.

444. Von Helmholtz H. Handbuch der Physiologischen Optik. Liepzig,
Germany: Voss, 1867.

445. Walker MP, Brakefield T, Allan Hobson J, Stickgold R. Dissociable
stages of human memory consolidation and reconsolidation. Nature
425: 616-620, 2003.

446. Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice
with sleep makes perfect: Sleep-dependent motor skill learning. Neuron
35: 205-211, 2002.

447. Wei K, Körding K. Relevance of error: What drives motor adaptation?
J Neurophysiol 101: 655-664, 2009.

448. Wei K, Körding K. Uncertainty of feedback and state estimation deter-
mines the speed of motor adaptation. Front Comput Neurosci 4: 11,
2010.

449. Wei K, Wert D, Körding K. The nervous system uses nonspecific motor
learning in response to random perturbations of varying nature. J Neu-
rophysiol 104: 3053-3063, 2010.

450. Werner S, van Aken BC, Hulst T, Frens MA, van der Geest JN, Strüder
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ral structure of motor variability is dynamically regulated and predicts
motor learning ability. Nat Neurosci 17: 312-321, 2014.

480. Wu T, Liu J, Zhang H, Hallett M, Zheng Z, Chan P. Attention to
automatic movements in Parkinson’s disease: Modified automatic mode
in the striatum. Cereb Cortex 25: 3330-3342, 2015.

481. Wymbs NF, Bastian AJ, Celnik PA. Motor skills are strengthened
through reconsolidation. Curr Biol 26: 338-343, 2016.
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