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ANALYSIS & PERSPECTIVE
Opportunities for Improving Motor Assessment and
Rehabilitation After Stroke by Leveraging Video-Based

Pose Estimation

Kendra M. Cherry-Allen, PT, DPT, PhD, Margaret A. French, PT, DPT, PhD, Jan Stenum, PhD,

Jing Xu, PhD, and Ryan T. Roemmich, PhD
Abstract: Stroke is a leading cause of long-term disability in adults in
the United States. As the healthcare system moves further into an era
of digital medicine and remote monitoring, technology continues to
play an increasingly important role in post-stroke care. In this Analysis
and Perspective article, opportunities for using human pose estimation—
an emerging technology that uses artificial intelligence to track human
movement kinematics from simple videos recorded using household
devices (e.g., smartphones, tablets)—to improve motor assessment
and rehabilitation after stroke are discussed. The focus is on the poten-
tial of two key applications: (1) improving access to quantitative, ob-
jective motor assessment and (2) advancing telerehabilitation for per-
sons post-stroke.

Key Words: Stroke, Video, Motor, Assessment, Rehabilitation,
Physical Therapy, Computer Vision, Pose Estimation

(Am J Phys Med Rehabil 2023;102:S68–S74)
A pproximately 795,000 incidences of stroke occur annually
in the United States alone,1 establishing stroke as a leading

cause of long-term disability in adults.1 Stroke often impairs
many aspects of movement,2 spanning fine motor control of
the fingers3,4 to complex whole-body tasks like walking.5–7

Rehabilitation is an essential component of post-stroke care be-
cause early, effective interventions can lead to significant im-
provements in motor function.8

Like many fields of medicine, rehabilitation continues to
accelerate into a digital era. Interest in remote measurement
and monitoring of patient function has increased rapidly,9 and
many studies have begun to investigate the feasibility and effi-
cacy of telerehabilitationvs. conventional physical therapy10–12

(Fig. 1). Technological innovations that provide new insight
into patient function or advance remote delivery of care will
undoubtedly continue to play increasingly important roles in
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the future of precision (i.e., patient-specific) rehabilitation.13

Artificial intelligence in particular shows outsized promise
not as a replacement for the clinician but as a valuable tool that
can provide insight into motor function and inform clinical
decision making.14

This article looks ahead to discuss promising roles for
emerging human pose estimation technology in motor rehabil-
itation after stroke. Pose estimation is an artificial intelligence
technology that uses computer vision to identify and track
key features of the human body (e.g., leg joints and fingers)
from simple videos that are easily recorded in the home or
clinic using common household devices (e.g., smartphones
and tablets). This technology offers clear and significant potential
for applications in rehabilitation, as it enables quantitative mea-
surement of human movement kinematics in virtually any setting
with minimal cost, time investment, and technological require-
ments. Here, the focus is specifically on applications of pose esti-
mation in post-stroke motor assessment and telerehabilitation.

Effective rehabilitation after stroke requires accurate as-
sessment of a patient’s motor abilities and subsequent delivery
of an appropriate treatment. There is a need for newmethods of
post-stroke motor assessment because current methods either
are subjective (e.g., clinical scales such as the Fugl-Meyer As-
sessment15), expensive, and inaccessible to most clinicians
(e.g., motion capture systems) or provide only limited informa-
tion about specific, predefined features of movement (e.g., mo-
bile applications, wearables, and gait mats). Reliance on these
methods limits our abilities to track rehabilitation outcomes
and timelines of post-stroke recovery because measurement
is infrequent or data limited. There is a significant role for pose
estimation to address all of these limitations by enabling objec-
tive, low-cost, comprehensive motor assessment for persons
post-stroke.

There are also significant limitations with current ap-
proaches to delivery of motor rehabilitation after stroke. Post-
stroke rehabilitation is commonly delivered via in-person
physical, occupational, and/or speech therapy. This necessi-
tates access to reliable transportation and proximity to a ther-
apy clinic. Furthermore, this model of care assumes that gains
achieved in the clinic will translate to real-world activities. Pa-
tients in vulnerable and underserved populations are in need of
more accessible approaches to rehabilitation therapy,16–19 cre-
ating a clear need to deliver therapy within real-world settings
outside of the clinic (e.g., within the home).20 Pose estimation
could eventually facilitate in-home motor rehabilitation to any-
one with access to a simple video recording device.

This article is structured into three primary sections. First,
there is a brief background on human pose estimation. Second,
there is a discussion of applications for pose estimation in
ine & Rehabilitation • Volume 102, Number 2 (Suppl), February 2023
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FIGURE 1. The number of new articles indexed on PubMed annually over the past 5 yrs resulting from the following searches (from top to bottom):
“stroke,” “stroke rehabilitation,” “stroke remote,” “stroke telerehabilitation,” and “pose estimation.” Percentages shown above each bar plot indicate
growth from 2017 to 2021.
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improving quantitative post-stroke motor assessment. Finally,
there are proposed applications for leveraging pose estimation
to advance telerehabilitation after stroke.

WHAT IS HUMAN POSE ESTIMATION?
Human pose estimation is an artificial intelligence tech-

nology that uses computer vision to identify and track key fea-
tures of the human body from simple videos. A simplified way
of thinking about pose estimation is as “motion capture in your
pocket,” where two- or three-dimensional human movement
kinematics can be generated from videos recorded by a com-
mon smartphone or tablet device. This technology has rapidly
gained traction in data science and neuroscience communities
with a wide array of different software options for performing
© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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human movement tracking.21–28 In these fields, it is often used
for applications like movement pattern recognition,29–31 but
pose estimation has not yet been used widely in clinical set-
tings or rehabilitation science (with notable limitations of cur-
rent algorithms reviewed in Seethapathi et al.32).

Three important barriers have precluded clinical applica-
tions of pose estimation. First, it is not known how well these
approaches track and measure movement in clinical popula-
tions (e.g., persons post-stroke) where motor deficits, assistive
devices, and out-of-plane compensatory movements maymake
tracking and analysis more difficult. There is a need for
large-scale validation and feasibility studies to demonstrate
the clinical potential of this technology. Second, there is a need
for accessible software that can be used with minimal technical
www.ajpmr.com S69
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expertise. Current algorithms require at least some degree of
computer programming acumen to install and execute. Third,
there is a paucity of data and awareness about potential clinical
applications of pose estimation.

Only a handful of studies have explored clinical applica-
tions in humans (recently reviewed in Stenum et al.33), al-
though this number will likely grow rapidly in the coming
years. Existing applications of pose estimation in stroke popu-
lations are in their nascency and have focused on estimating
spatiotemporal gait parameters in small samples of persons
post-stroke.34,35 Many other computer vision-based ap-
proaches have been used to measure movement in persons
post-stroke (some examples reviewed in Souza et al.36), al-
though most of these require specialized equipment (e.g., a
Microsoft Kinect device) that is inherently less accessible than
video-based techniques like pose estimation.

Of note is the fact that most existing pose estimation algo-
rithms require intensive computing capabilities. Depending on
the duration and complexity of the video recording and desired
output (e.g., hand-only tracking vs. full-body tracking), a graph-
ics processing unit may be necessary for time-efficient analysis.
Real-time movement tracking is also available in some algo-
rithms (e.g., OpenPose25) but is particularly computationally
intensive. Therefore, although only a simple video is needed
as an input into the pose estimation algorithm, current algo-
rithms often require significant computing power to perform
the quantitative kinematic tracking. Fortunately, there are free
resources available (e.g., Google Colaboratory) that can pro-
vide this computing power remotely if the user does not own
a graphics processing unit.

POTENTIAL APPLICATIONS OF HUMAN POSE
ESTIMATION IN POST-STROKE

MOTOR ASSESSMENT

Why Use Pose Estimation to Measure Movement
After Stroke?

There are several reasons that automated video-based mo-
tor assessments could significantly improve care for persons
post-stroke. First, frequent motor assessment is critical for
tracking recovery and rehabilitation progress after stroke. Cur-
rent standards for post-stroke motor assessment (e.g., Fugl-
Meyer Assessment15,37 and Action Research Arm Test38,39) rely
upon subjectively rated ordinal scales that require a trained clini-
cian to manually inspect and rate the performance of many sim-
ple movement tasks and aspects of motor function or impair-
ment. Many of these are largely kinematic in nature and could
be captured using pose estimation, including assessments of
movement speed, amplitude, and range of motion. The reliance
upon the time and expertise of the clinician limits the frequency
with which motor assessments can be performed, thereby limit-
ing information about the trajectory of the patient’s recovery
and/or rehabilitation. Pose estimation provides an avenue for
fast, accurate, and objective measurement of motor function in
persons post-stroke.

Second, persons post-stroke often exhibit a wide variety of
motor deficits that vary in type and severity.5,6,37,40–42 Many
persons post-stroke exhibit impairment in fine motor control
and gait, but these impairments are difficult to assess quantita-
S70 www.ajpmr.com
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tively in clinical settings without access to expensive, research-
grademotion capture equipment. Furthermore, accessible tools
for quantitative in-home measurement of movement kinemat-
ics are not currently available. There is clear potential for pose
estimation to offer new approaches for precise measurement of
motor function post-stroke using accessible, affordable tech-
nologies that are commonly available within the home and
clinic (e.g., smartphones and tablets).

Third, many post-stroke motor assessments are performed
using validated tasks that necessitate clinic visits because they
require interaction with specific objects (e.g., Nine-Hole Peg
Test,43 Purdue Pegboard,44 and Box and Block Test45). Beyond
the necessity of an in-person clinic visit, these types of assess-
ments have several other important limitations. Some clinics
may have access to only some of these assessment materials
but not others; training is often required to administer the as-
sessment appropriately; and some assessments can take con-
siderable time to administer (especially if the patient dem-
onstrates severe impairment and completes subtasks of the
assessments very slowly). There is a need to improve the flexi-
bility of motor assessments to promote accessibility in a wider
range of environments. Validation of pose estimation ap-
proaches for tracking movements involved in these clinical stan-
dards against ground-truth measurements and commonly used
clinical assessments could lead to the development of remote as-
sessments that approximate these object-based tests without the
need for the objects themselves or an in-person clinic visit.
What Aspects ofMovement Could BeMeasured?
Pose estimation has the potential to capture aspects of

post-stroke motor impairment that are observable in movement
kinematics. Although many devices exist for measuring move-
ment kinematics outside of the clinic (e.g., wearables, com-
puter vision-based gaming systems), pose estimation could
provide significant advantages over existing remote monitor-
ing devices in that the data are inherently “raw” (i.e., there is
considerable flexibility in what can be measured) and, impor-
tantly, no equipment is required beyond a simple video record-
ing device. This subsection discusses three primary areas of
potential application: (1) fine motor control of the hand and
fingers, (2) arm movements, and (3) gait (Fig. 2).

Many persons post-stroke exhibit kinematic deviations in
movements of the paretic hand3,4,46–53 that result from impair-
ments in fine motor control. Deficits in control can be quanti-
fied by measuring the ability to perform skilled and/or func-
tional movements with the fingers39,45,54–56 or by testing the
ability to individuate movements of one finger from an-
other.3,4,46,47,57 Many key aspects of these assessments—
flexion and extension of individual fingers, closing the fingers
and thumb in a precision grip, opening of the hand, and move-
ment of the fingers in isolation of one another—can be cap-
tured in movement kinematics and could lend well to assess-
ment via pose estimation. It was recently shown that several
relevant tasks—hand opening and closing, hand pronation and
supination, and finger tapping—can be tracked accurately using
pose estimation in healthy young adults,58 although this ap-
proach has not yet been validated in persons post-stroke.

Beyond confirming existing assessments, video-based
pose estimation also holds promise for filling existing gaps in
© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 2. A, General workflow for using pose estimation for measurement of clinically relevant movement kinematics. B, Example applications for
using pose estimation to track movement kinematics with clinical relevance for persons post-stroke.
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post-stroke dexterity assessment. Clinical assessments of dex-
terous hand movements often use ecologically sound tasks
(e.g., precision grip and object manipulation) at the expense
of granularity. On the other hand, laboratory-based kinematic/
kinetic assessments with higher granularity often ignore key
aspects of real-world dexterous control. For example, most as-
sessments of finger individuation rely on devices that only as-
sess movement in one or two dimensions (e.g., finger flexion
and extension) but omit other movements that are key aspects
of hand dexterity (e.g., abduction/adduction and circumduc-
tion). One study using the Cyber Glove (Virtual Technologies,
Palo Alto, CA) showed that abduction and adduction were
more impaired than flexion/extension in persons post-stroke.4

However, the Cyber Glove also has limited resolution. For in-
stance, it does not accurately assess middle finger abduction/
adduction, and the measured ranges of motion for all the finger
joints were consistently much smaller than those assessedwith-
out wearing the glove.4 Moreover, individuation impairment
assessed using the Cyber Glove is only minimally correlated
with clinical assessment of hand function.4,59

Because of the lack of granularity of these assessment
tools, it is difficult to determine the relationship between indi-
viduation and other hand functions. One reason for this dif-
ficulty is that motor control variables omitted from these
assessments—such as movement direction, velocity, and spa-
tial and temporal coordination across fingers—may play essen-
tial roles in functional everyday activities. Another possible
reason is that clinical assessments often quickly reach a ceiling
when residual deficits can only be detected by kinematic/
kinetic measures. These fine-grained analyses become more
informative with respect to dexterous control, where the motor
repertoires push the boundary regions of the neural/biomechanical
constraints.60 Detection of these subtle impairments is critical
in determining the true recovery of those repertoires vs. com-
pensation after stroke. For example, persons post-stroke have
demonstrated impairment in anticipatory shaping of hand pos-
ture in a reach-and-grasp task and exhibited a compensatory
strategy of increasing metacarpophalangeal joint flexion to ad-
just to different object shapes.61

Movements of the paretic arm are also impaired in many
persons post-stroke.41,62–66 Persons post-stroke commonly
show kinematic deviations in reachingmovements,41,67 includ-
ing impairments in velocity, path curvature, index finger end-
© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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point, and joint individuation of shoulder, elbow, and wrist.
Interestingly, joint individuation was the best predictor of kine-
matic properties such as reaching path curvature and end-point
error.68 Video-based pose estimation may be an accessible tool
for capturing these kinematic features. Furthermore, such anal-
yses may provide richer kinematic information than can be ob-
tained in most current clinical settings, allowing clinicians and
researchers to directly relate these measures with clinical as-
sessments. For example, the Fugl-Meyer Assessment of Upper
Extremity impairment after stroke underscores impairment in
out-of-synergy joint movements (e.g., joint extension, shoulder
elevation/retraction/abduction/rotation, forearmpronation/supination,
wrist circumduction).15 These assessments often cannot be fully
captured by laboratory-based motion capture systems, and clin-
ical scores lack granularity and are based on subjective visual in-
spection. Pose estimation may have the potential to extract de-
tailed kinematic information with a higher level of granularity
than Fugl-Meyer scores, although the accuracy of this approach
has yet to be tested. However, also note that pose estimation will
not be able to capture other important aspects of hand dexterity,
including sensory feedback,69 and force production.70

Finally, more than half of persons post-stroke have resid-
ual gait impairments even after prolonged rehabilitation.71 Gait
dysfunction is heterogeneous and idiosyncratic after stroke:
deficits are apparent in a variety of leg joint movements (e.g.,
stiff knee and foot drop5,6,72–76), spatiotemporal gait parame-
ters (e.g., shortened paretic stance time and asymmetric step
lengths5,7,77,78), and measures of global gait function (e.g.,
slowed walking speed6,78). Many clinical facilities rely on ei-
ther subjective visual inspection of gait or devices like wear-
ables or instrumented gait mats that provide only limited and
predefined gait metrics (e.g., spatiotemporal parameters but
little/no information about whole-body gait kinematics). How-
ever, it is possible that many (if not all) of the deficits in kine-
matics and spatiotemporal gait parameters mentioned above
could be measured using movement tracking via pose estima-
tion. Indeed, recently developed pose estimation–based gait
analysis workflow demonstrated accurate measurement of a
wide variety of gait parameters in healthy adults79 and others
have shown preliminary data suggesting that similar ap-
proaches can accurately estimate selected gait parameters in
persons post-stroke.34,35 Similar to the other domains of move-
ment that we have discussed previously, there is a clear need for
www.ajpmr.com S71
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larger validation studies in persons post-stroke; however, early
results suggest exciting potential for assessing post-stroke gait
using pose estimation-based gait analysis.
POTENTIAL APPLICATIONS OF HUMAN
POSE ESTIMATION IN REHABILITATION

AFTER STROKE
The ability to measure movement kinematics via pose es-

timation has the potential for significant impact on post-stroke
rehabilitation practice. First, it can provide clinicians with a
readily accessible tool to gather quantitative data about move-
ment quality, thus generating a more comprehensive picture
of a patient’s movement status and changes to that status that
occur during rehabilitation. Traditionally, precise kinematic
data were unavailable to clinicians as they required expensive
and sophisticated three-dimensional motion analysis hardware
and software to obtain. Typical clinical outcomes focus on
whether a person can execute a functional task (e.g., Can a per-
son pick up a cup to drink? Howmany steps does a person take
in a day?), with only sparse observation-based information
gathered about how a person completes the task (e.g., move-
ment quality). However, during a recent “Stroke Recovery
and Rehabilitation Roundtable,” experts agreed that there is
an urgent need to include movement quality measures (e.g., ki-
nematics) in stroke rehabilitation trials.80

Several studies support the need for inclusion of move-
ment quality measures in post-stroke rehabilitation. For in-
stance, upper extremity kinematics in persons post-stroke
(e.g., movement time, trajectory length, directness, smooth-
ness, and trunk displacement) were sensitive to change over
time, correlated with single time point upper extremity
Fugl-Meyer scores, and associated with clinically meaningful
improvements.81–84 Similarly, lower extremity kinematics—
particularly those of the paretic leg—are correlated with mea-
sures of gait function and may be used to identify individuals
with continuing gait deficits,85 despite appearing fully “recov-
ered” on traditional scales of gait function (gait speed).86,87

Thus, quantitative movement analysis is an important clinical
tool for assessing pathologies and could provide real-time indi-
FIGURE 3. Conceptual diagram showing a clinician-centered approach for u
turn, leveraging these data to facilitate in-home telerehabilitation.
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cators of patient recovery with improved accuracy when com-
pared with reliance on clinical scores.

Second, pose estimation stands to advance the field of
post-stroke rehabilitation by allowing clinicians and re-
searchers to “see behind the curtain” into how people move
in the real world and better understand the real-world impact
of clinical interventions. Because pose estimation requires only
a simple video that can be recorded using household devices,
there is significant potential for measuring patient kinematics
during natural behaviors directly in the home or other commu-
nity setting. Improving real-world performance is the ultimate
objective of rehabilitation, and clinicians and researchers oper-
ate under the assumption that a person’s in-clinic movement
abilities directly reflect how he/she moves in daily life. How-
ever, recent evidence challenges this assumption. Indeed, clin-
ical motor capacity and real-world motor performance of the
paretic arm have been found to be incongruent in persons
post-stroke.88 Pose-estimation movement analysis obtained
during real-world activity may help clinicians understand to
what extent movement and movement improvements exhibited
in the clinic reflect movement in the home and contribute to
more naturalistic accounts of meaningful changes during
post-stroke rehabilitation.89

Finally, pose estimation–based movement analysis can be
incorporated into a growing realm of rehabilitation: telereha-
bilitation (Fig. 3). Telerehabilitation—the delivery of rehabili-
tation in the home via videoconferencing—has emerged as a
promising mode to overcome access to in-person care.90

Home-based stroke rehabilitation is safe and provides impor-
tant insight about environmental factors that influence mobil-
ity. As in in-person post-stroke rehabilitation, a critical element
of effective telerehabilitation is the ability to collect quantita-
tive data about an individual’s movement.91 A number of re-
cent technologies have aimed to meet this need. For instance,
body sensors can identify the type and quantity of movement
during practice or daily routines.92 Microsoft Kinect and vir-
tual reality systems are able to track reaching and grasping
movements within a defined area.93,94 Pose estimation–based
movement analysis can be used in conjunction with these other
remote monitoring tools but has the advantage of not requiring
sing pose estimation to measure in-home movement kinematics and, in

© 2023 Wolters Kluwer Health, Inc. All rights reserved.
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any equipment beyond the patient’s own recording device to
capture the data. Together, these technologies will allow fre-
quent, precise data acquisition that can be used to individualize
care and improve post-stroke rehabilitation.

WHAT’S NEXT?
Before widespread implementation of pose estimation

tools for measuring movement after stroke, there is a need to
understand (1) how well these tools can capture common post-
stroke motor deficits and (2) best practices regarding how videos
should be recorded to capture specific deficits. This validation
and feasibility work is ongoing,34,35 but significantly more re-
search is needed to optimize the use of pose estimation for
post-stroke motor assessment. In particular, there is an unmet
need for studies of pose estimation applications for capturing
motor deficits in the paretic hand and arm. Specifically, it re-
mains to be determined how sensitive pose estimation is in
capturing digit individuation and movements of exceptionally
small ranges of motion.

There are also a variety of human factors and infrastruc-
ture barriers to clinical implementation of these technologies
that are discussed at length in a previous review.33 Briefly, pose
estimation technologies need to become more user-friendly for
persons without technical backgrounds, provide easily inter-
pretable outcome measures with direct clinical relevance, and
become more accessible to groups that do not have access to
high-powered computing resources. Clinical applications of
pose estimation technologies will likely not become widely
used until these barriers—which are largely addressable—
are overcome.

CONCLUSIONS
Pose estimation has the potential to make a significant im-

pact on the way that movement is measured and care after
stroke is delivered. The ability to capture clinically relevant
movement kinematics using a household video recording de-
vice could lead to the development of widely accessible tools
for quantitative post-stroke motor assessment that could be per-
formed in virtually any setting, including directly in the home
or clinic. Furthermore, there is opportunity to leverage pose es-
timation tools to deliver telerehabilitation interventions that tar-
get movement quality directly in patient homes. It is antici-
pated that these technologies will play a prominent role in the
future of digital medicine and remote monitoring of motor
function in persons post-stroke.
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