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� Stroke survivors demonstrate reduced interhemispheric inhibition (IHI) at rest and reduced IHI modulation with muscle contraction compared to
neurotypical older adults.

� Stroke survivors with greater reduction of IHI with contraction had greater motor impairment and mirroring.
� Findings support the importance of characterizing state-dependent neural circuitry to understand post-stroke motor behavior.
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Objective: To investigate state-dependent interhemispheric inhibition (IHI) in chronic stroke survivors
compared to neurotypical older adult controls, and test whether abnormal IHI modulation was associated
with upper extremity motor behavior.
Methods: Dual-coil transcranial magnetic stimulation (TMS) measured IHI bi-directionally, between non-
lesioned and lesioned motor cortex (M1) in two activity states: (1) at rest and (2) during contralateral
isometric hand muscle contraction. IHI was tested by delivering a conditioning stimulus 8-msec or 50-
msec prior to a test stimulus over contralateral M1. Paretic motor behavior was assessed by clinical mea-
sures of impairment, strength, and dexterity, and mirroring activity in the non-paretic hand.
Results: Stroke survivors demonstrated reduced IHI at rest, and less IHI modulation (active – rest) com-
pared to controls. Individual differences in IHI modulation were related to motor behavior differences
where greater IHI modulation was associated with greater motor impairment and more mirroring. In
contrast, there were no relationships between IHI at rest and motor behavior.
Conclusions: Abnormal state-dependent interhemispheric circuit activity may be more sensitive to post-
stroke motor deficits than when assessed in a single motor state.
Significance: Characterizing state-dependent changes in neural circuitry may enhance models of stroke
recovery and inform rehabilitation interventions.

� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Interactions between motor cortices are necessary to generate
precise and accurate movements. In a typical nervous system,
there is mutual suppression between hemispheres at rest which
is released during volitional unilateral activity. According to the
traditional ‘‘interhemispheric imbalance model”, this balance
becomes disrupted after stroke, such that there is reduced inter-
hemispheric inhibition (IHI) from the lesioned motor cortex (l-
M1) to the non-lesioned M1 (nl-M1). This disruption results in
excessive IHI from the nl-M1 to the l-M1, which classically has
been suggested to contribute to motor impairment (Murase
et al., 2004; Takeuchi et al., 2012; Ward and Cohen, 2004). How-
ever, this mechanism is unable to account for complex recovery
profiles observed across levels of impairment post-stroke (Di
Pino et al., 2014; Di Pino and Di Lazzaro, 2020; Lotze et al., 2012;
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McCambridge et al., 2018). Further, ‘‘rebalancing” interventions to
upregulate l-M1 or downregulate nl-M1 excitability (e.g., via neu-
romodulation, constraint-induced movement therapy) have
yielded variable effects (Boddington and Reynolds, 2017;
McCambridge et al., 2018), suggesting an incomplete understand-
ing of the dynamics of IHI in the healthy brain, its role in motor
dysfunction, and factors that influence IHI post-stroke.

IHI post-stroke is typically assessed in a single motor state (e.g.,
at rest or during activity) using transcranial magnetic stimulation
(TMS) (Bertolucci et al., 2018; Boddington and Reynolds, 2017).
When a single TMS pulse is delivered over M1 during ipsilateral
tonic contraction, a transient suppression of muscle activity, ter-
med the ipsilateral silent period (iSP), is observed and used to
quantify IHI (Wassermann et al., 1991). Greater iSP duration during
paretic contraction, reflective of greater inhibition from nl-M1 to l-
M1, has been linked to post-stroke motor impairment (Bolognini
et al., 2011; Harris-Love et al., 2011). An alternative, less common
TMS method to evaluate IHI that may have more functional rele-
vance to paretic motor function uses a paired-pulse TMS method,
with a pulse delivered over each M1 at a specific inter-pulse inter-
val (Ferbert et al., 1992). In this dual coil approach, a conditioning
TMS pulse is delivered 8–50 msec prior to a test TMS pulse that
modulates the evoked muscle response (i.e., the motor evoked
potential, MEP). Unlike iSP, the dual-coil method can probe IHI at
rest, during motor preparatory activity, and/or during voluntary
muscle contraction (Bertolucci et al., 2018).

In healthy individuals, IHI decreases during contralateral volun-
tary contraction compared to IHI at rest (Chen et al., 2003; Turco
et al., 2019), suggesting that state-dependent IHI modulation
may be a relevant probe of voluntary motor control, which may
be more informative than IHI assessed in a single state to under-
stand cortical interactions relating to paretic motor function.
Indeed, a seminal study by Murase and colleagues demonstrated
that individuals with less motor impairment had more IHI flexibil-
ity across motor states, indicated by reduced IHI from nl-M1 to l-
M1 during a premovement period compared to rest, similar to
observations in neurotypical adults. In contrast, those individuals
who were unable to modulate IHI during the premovement period
demonstrated greater chronic post-stroke motor impairment
(Murase et al., 2004). Whether abnormal IHI modulation in the
context of motor preparation extends to a sustained active motor
state, such as tonic unilateral contraction, is unclear. Moreover,
the notion that greater IHI onto l-M1 is associated with greater
motor impairment post-stroke remains controversial. A recent
meta-analysis of 112 studies using TMS-based measures of post-
stroke neurophysiology concluded there is not a clear imbalance
of IHI between hemispheres in either acute or chronic phases after
stroke (McDonnell and Stinear, 2017). Further, some studies have
found opposite or no relationships between IHI from nl-M1 to l-
M1 and motor impairment (Mang et al., 2015; Takeuchi et al.,
2010; Xu et al., 2019).

One issue with probing IHI during unilateral contraction is the
possibility of unintended mirror activity in the nonparetic limb,
which is known to increase in more impaired stroke survivors
(Kim et al., 2003; Nelles et al., 1998). Functional magnetic reso-
nance imaging (fMRI) findings suggest that mirror movements
may arise due to bilateral cortical activation and/or hyperexcitabil-
ity of nl-M1 in the acute and sub-acute stages (Calautti and Baron,
2003; Willer et al., 1993). However, bilateral activation has also
been observed in patients without mirror activity (Cramer et al.,
1997). Further, it was shown that while mirroring activity reduced
as hand function improved longitudinally, there was no evidence
for cortical hyper-excitability in either hemisphere, suggesting a
potential subcortical origin of mirroring (Ejaz et al., 2018). TMS
may elucidate mechanisms of mirroring activity post-stroke
(Chieffo et al., 2013) but has rarely been simultaneously quantified
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during IHI assessments (Takeuchi et al., 2010). If normal communi-
cation between hemispheres prevents unintentional mirroring
activity, abnormal IHI post-stroke may relate to the presence of
mirroring activity and greater motor impairment.

Here, we used dual-coil TMS to investigate state-dependent
modulation of IHI circuitry in chronic stroke and characterized
its associations with paretic upper limb motor behavior. We
hypothesized that stroke survivors would have reduced l-M1 IHI
modulation (difference between IHI across motor states) compared
to controls, and that the magnitude of IHI modulation would be
related to mirroring activity and upper limb motor impairment.
2. Methods

2.1. Participants

Eighteen chronic stroke survivors (11 female, 63.4 ± 11.4 years
[mean ± standard deviation]) and fifteen right-handed neurotypi-
cal older adult controls (6 female, 69.1 ± 5.9 years) participated in
a single experimental session. Participants with stroke had a single
ischemic subcortical or cortical stroke confirmed by magnetic res-
onance imaging (MRI) with a range of paretic limb impairment
(Upper Extremity Fugl-Meyer assessment (UEFMA) score range:
15–66/66) and weakness (Shoulder Abduction/Finger Extension
(SAFE) score range: 2–9/10) (Fig. 1). Controls were included if they
had no neurologic conditions or musculoskeletal conditions affect-
ing the upper limbs. Participants were excluded if they had signif-
icant cognitive impairment (Montreal Cognitive Assessment < 20)
or contraindications to TMS. The experimental protocol was appro-
ved by the Emory University Institutional Review board, and all
participants gave written informed consent before entering the
study.
2.2. Measures of upper extremity motor behavior

Upper extremity clinical motor assessments included the Upper
Extremity Portion of the Fugl-Meyer Assessment (UEFMA) and
shoulder abduction/finger extension (SAFE) manual muscle
strength. SAFE scores (max 10) were obtained by summing the
Medical Research Council (MRC) grades (max 5), obtained sepa-
rately for shoulder abduction and finger extension. We also
assessed grip strength using a handheld dynamometer and manual
dexterity with the Nine-Hole Peg Test (NHPT). For the NHPT, par-
ticipants placed and removed nine pegs, one at a time, as quickly
as possible. Since four participants could not complete the NHPT,
the time to complete the NHPT was converted to a rate, or the
number of pegs transferred per second.
2.3. TMS procedures

Participants were seated semi-recumbent in an armchair. Single
monophasic TMS pulses (Magstim 2002, MagStim, Wales, UK) were
delivered using a 70 mm hand-held figure-of-eight coil over the l-
M1 (nondominant (nd)-M1 in controls) and a 50 mm branding iron
coil over the nl-M1 (dominant (d)-M1 in controls). Each coil was
held tangentially to the scalp, oriented 45 degrees posterolateral
from the mid-sagittal plane to induce a posterior-anterior (PA) cur-
rent in M1. For each hemisphere, the location of first dorsal inter-
osseous (FDI) hotspot, defined as the coil position that elicited the
largest and most consistent response in the contralateral FDI mus-
cle, was determined. Real-time stereotactic neuronavigation
(BrainSight, Rogue Research) was used for consistent coil position-
ing throughout the session. The resting motor threshold (RMT) (%
of maximum stimulator output) was determined bilaterally using



Fig. 1. Each participant is color-coded for identification in figures. IC: internal capsule; BG: basal ganglia; ACA: anterior cerebral artery; MCA: middle cerebral artery. UEFMA:
Upper Extremity Fugl-Meyer Assessment; SAFE: Shoulder Abduction/Finger Extension; NHPT: Nine-Hole Peg Test; RMT: resting motor threshold; l-M1: lesioned motor
cortex; nl-M1: non-lesioned motor cortex; MEP –: motor evoked potential negative; *MEP –: MEP absent at rest, but present during paretic contraction. Data reported as
mean ± standard deviation.
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the ML-PEST method (maximum likelihood model of parameter
estimation by sequential testing) (Awiszus, 2003).

Surface electromyography (EMG) was recorded from the FDI,
abductor pollicis brevis (APB), and extensor carpi radialis (ECR)
muscles bilaterally. Two disposable conductive adhesive hydrogel
electrodes were attached over each muscle and a ground electrode
was placed over the dorsum of each hand. EMG data were sampled
using a 16-channel EMG system (BrainAmp ExG amplifier, Brain
Products GmbH) at a rate of 5,000 Hz, and band-pass filtered at
10–1,000 Hz.

2.4. Interhemispheric inhibition protocol

IHI was examined by delivering a suprathreshold conditioning
stimulus (CS) prior to a suprathreshold test stimulus (TS) over
the contralateral M1 (Ferbert et al., 1992). CS and TS were deliv-
ered at 120% RMT. IHI was tested with both a short interval, biased
to GABAA (type A gamma-aminobutyric acid) circuitry (Chen et al.,
2003; Irlbacher et al., 2007), and a long interval, reflective of GABAB

circuitry similar to iSP, (Avanzino et al., 2007; Chen et al., 2003) to
better understand the mechanisms underlying IHI modulation and
its relation to upper limb behavior. To assess short IHI, the CS was
delivered 8 msec prior to the TS and for long IHI, the CS was deliv-
ered 50 msec prior to the TS (Fig. 2A). IHI was assessed bi-
directionally, and in two motor states: (1) rest and (2) active. For
the rest state, both hands were resting comfortably on a compliant
surface and participants were asked to maintain a relaxed state in
both hands (Fig. 2B). Resting state was confirmed online by the
experimenter monitoring EMG signals in bilateral FDI, APB, and
ECR muscles. For the active state, IHI was assessed during sus-
tained isometric contraction of the contralateral FDI muscle at
50% of maximum voluntary contraction (Fig. 2C). Online visual
feedback was provided to the participants to maintain a consistent
level of muscle activity. If the level of contraction was not able to
be maintained, rest breaks were provided to ensure consistent
levels of muscle activity during active TMS assessments.

For each motor state, hemisphere, and ISI, a block of 20 trials
was performed with an inter-trial interval of 4–6 seconds. In each
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block, 10 single TS pulses were delivered in isolation, and 10 CS-TS
pulses were delivered, with the order of conditioned and uncondi-
tioned sets randomized across participants. The state, hemisphere,
and ISI blocks were randomized within and across participants.
Participants were given a �1 minute break between each set of
10 pulses involving sustained muscle activity to minimize poten-
tial fatigue effects.

In two stroke participants, MEPs could not be elicited from l-M1
at rest. Since IHI can be obtained using a wide range of subthresh-
old and suprathreshold CS intensities (Chen et al., 2003), IHI in nl-
M1 was evaluated using a CS intensity of 100% MSO.

2.5. Data analysis

For each trial, peak-to-peak amplitudes of the MEP were
extracted. Rest and active IHI were computed as the percentage
of the mean conditioned MEP (CS + TS) relative to the mean uncon-
ditioned MEP amplitude (TS alone). IHI was quantified separately
for each hemisphere, state, and ISI. Larger IHI values represented
less inhibition. We also quantified corticospinal excitability (CSE)
by calculating the mean of the unconditioned MEP amplitude for
each hemisphere and state. TS CSE indicates the mean MEP ampli-
tude from the TS alone. CS CSE indicates the mean MEP amplitude
elicited by the conditioning stimulus over the hemisphere con-
tralateral to the test hemisphere.

To investigate how IHI is modulated across states, we calculated
the difference in IHI between rest and active states (DIHI = IHI
Active – IHI Rest). Therefore, DIHI = 0 indicated no modulation of
inhibition, DIHI > 0 indicated less inhibition, and DIHI < 0 indicated
greater inhibition. The same approach was applied for CSE. DTS
CSE represents modulation of CSE contralateral to the contracted
hand while DCS CSE represents modulation of CSE ipsilateral to
the contracted hand.

Mirroring activity was quantified in the nonparetic hand from
the background EMG activity in FDI during paretic contraction.
We normalized the FDI activity when the nonparetic FDI muscle
was instructed to be relaxed (i.e., IHI during paretic contraction),
relative to when the nonparetic FDI muscle was voluntary acti-
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Fig. 2. Illustration of interhemispheric inhibition (IHI) procedures. A. A contralateral conditioning (CS) stimulus delivered prior to a test stimulus (TS) over motor cortex (M1)
inhibits the motor evoked potential (MEP) amplitude compared to TS alone. B. IHI Rest: IHI assessed with both hands relaxed. C. IHI Active: IHI assessed during sustained
isometric contraction of the contralateral first dorsal interosseous (FDI) muscle.
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vated (i.e., IHI during nonparetic contraction). Larger values repre-
sented greater mirroring activity.
2.6. Statistical analysis

Group differences in demographics, RMT difference, and motor
behavior (NHPT, mirroring activity) were assessed with indepen-
dent sample t-tests. We used RMT difference instead of RMT for
each hemisphere since different TMS coils were used. For instance,
the RMT of nl-M1 appears higher than that of l-M1 (Fig. 1), oppo-
site of what is typically observed (McDonnell and Stinear, 2017),
but this is not unexpected since the smaller diameter coil was used
to elicit responses in nl-M1. Therefore, we computed the RMT dif-
ference between hemispheres (l-M1 – nl-M1 in stroke, nd-M1 – d-
M1 in controls).

Linear mixed effects models were performed using the lmerTest
package in R (Kuznetsova et al., 2017) to assess the contributions of
Group, Hemisphere, and State on IHI using the following general
model structure:

IHI ¼ b0 þ b1 � Groupþ b2 � Hemisphereþ b3 � Stateþ b4

� Group � Hemisphereþ b5 � Group � State þ e ð1Þ
Group, Hemisphere, and State are dichotomous variables, with

reference levels of Stroke (vs. Control), l-M1/nd-M1 (vs. nl-M1/d-
M1), and Rest (vs. Active), respectively. e represents the random
effect of participant. Hemispheres were matched across groups
consistent with previous literature (l-M1 with nd/M1 and nl-M1
with d-M1) (Mang et al., 2015; Palmer et al., 2019). Since we used
dummy coding, significant regression coefficients are in relation to
the intercept b0 which represents l-M1 IHI in stroke at rest. There-
fore, the regression coefficient b1 indicates differences in IHI
between controls (nd-M1) and stroke (l-M1) at rest, b2 indicates
differences between hemispheres within stroke at rest, and b3 indi-
cates differences between rest and active within stroke. b4 indi-
cates an interaction between Group and Hemisphere on IHI at
rest. b5 indicates an interaction between Group and State on IHI
targeting l-M1/nd-M1. Separate models were performed for short
IHI and long IHI.

The null hypothesis of a linear mixed effects model corresponds
to a regression coefficient of zero. To test whether IHI at rest was
different between hemispheres for stroke versus controls, we eval-
uated b4 = 0. To test whether state had different effects on IHI for
stroke (l-M1) versus controls (nd-M1), we evaluated b5 = 0.
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Degrees of freedom were approximated using the Satterthwaite
method.

Since several motor behavior variables (UEFMA, NHPT, SAFE,
grip strength) were correlated with one another, we performed
principal component analysis (using ppca.m in MATLAB) to reduce
the number of variables and account for correlations between
related variables. The first principal component accounted for
83.3% of the total variance of the regression variables and is
referred to as motor impairment score. We then performed Pearson
correlations among three main variables: IHI, motor impairment
score, and mirroring activity.

The ISI (short versus long IHI) used for correlation analyses was
determined post-hoc, based on the metric that showed the stron-
gest Group � State interaction in the linear mixed effects models.
Separate correlations were performed for IHI Rest and DIHI, cor-
recting for multiple comparisons using the false discovery rate
(FDR) p-values (pcorr).

As an exploratory analysis, we investigated whether state-
dependent differences in IHI were a function of cortical excitability
of the conditioning (i.e., MEPs elicited by the conditioning stimulus
over nl-M1, CS CSE) and/or the target hemisphere, (i.e., MEPs eli-
cited by the test stimulus over l-M1, TS CSE). We first tested if
CSE was influenced by stroke and activity using a linear mixed
effects model with fixed factors Group, State, and Hemisphere
and the following general model structure:

CSE ¼ b0 þ b1 � Groupþ b2 � Hemisphereþ b3 � Stateþ b4

� Group � Hemisphereþ b5 � Group � State þ b6 � Group
� State � Hemisphere þ e ð2Þ

As in equation (1), we used dummy coding such that significant
regression coefficients are in relation to the intercept b0 which rep-
resents l-M1 CSE in stroke at rest. If the 3-way interaction was sig-
nificant, we then examined separate models for each Hemisphere.

We then explored whether CSE modulation predicted IHI mod-
ulation in stroke compared to controls with multiple regression
using the following formula:

DIHI ¼ b0 þ b1 � Groupþ b2 � DTSþ b3 � DCSþ b4 � DTS
� Groupþ b5 � DCS � Groupþ e ð3Þ

whereDTS indicates TS CSE modulation (Active – Rest) for MEPs
elicited over the target M1 (l-M1 in stroke, nd-M1 in control), and
DCS indicates CS CSE modulation for MEPs elicited over the nontar-
get M1 ipsilateral to contraction (nl-M1 in stroke, d-M1 in control).
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For all behavioral and TMS outcome measures, values greater
than three standard deviations from the mean were classified as
extreme outliers and removed from analysis (only applicable to
one control participant’s mirroring EMG data).
3. Results

3.1. Demographics and baseline neurophysiology

Two stroke participants were MEP- at rest. One participant had
no volitional paretic FDI contraction and was excluded from all
neurophysiological analyses. The other participant had volitional
paretic FDI contraction and quantifiable MEPs in the active state
(dark green color in each figure) and therefore were included in
analyses where appropriate (e.g., linear mixed effects models that
account for presence of missing data from l-M1 at rest).

The RMT difference between hemispheres was similar in stroke
and controls (F1,29 = 0.90, p = 0.35, g2 = 0.030). Stroke and controls
were similar in age (p = 0.32) and gender distribution (p = 0.27). As
expected, NHPT was slower in stroke (0.16 ± 0.12 pegs/second)
compared to controls (0.38 ± 0.06 pegs/second) (p < 0.0001). Mir-
roring activity in the nonparetic hand (30.1 ± 30.7%) was larger
compared to that in the dominant hand for controls (8.61 ± 9.45
%) (p = 0.014).
3.2. IHI at rest for short and long IHI

The linear mixed effects model for short and long IHI are shown
in Table 1. Since we used dummy coding, significant predictor vari-
ables are in relation to the intercept which represents l-M1 IHI in
stroke at rest. For short IHI in stroke, there was greater IHI target-
ing nl-M1 compared to l-M1 at rest [Hemisphere: b(CI) = �13.22
(�23.90 – �2.54), t91.64 = �2.46, p = 0.016]. Between groups, there
was greater IHI targeting nd-M1 in controls compared to l-M1 at
rest [Group: b(CI) = �32.67 (�48.52 – �16.82), t88.58 = �4.10,
p < 0.001]. The significant Hemisphere � Group interaction reflects
no difference in IHI between groups for nl-M1/d-M1 IHI, but a
decrease in IHI for l-M1 in stroke compared to nd-M1 in controls
at rest [b(CI) = 20.86 (5.33 – 36.39), t91.42 = 2.67, p = 0.009] (Fig. 3-
A-i.). A similar pattern was observed for the linear mixed effects
model for long IHI (Table 1, Fig. 3A-ii). There was greater long IHI
targeting nl-M1 compared to l-M1 at rest [Hemisphere: b(CI) = �
16.29 (�30.58 – �2.01), t91.93 = �2.27, p = 0.026] and greater long
IHI targeting nd-M1 in controls relative to l-M1 at rest [Group: b(
CI) = �29.84 (�48.74 – �10.93), t109.43 = �3.13, p = 0.002].
Table 1
Multilevel effects model table results for Short and Long IHI.

Short IHI

Predictors b (95% CI) Statistic p

Fixed Effects
Intercept 87.16 (76.20 – 98.11) 15.80 <0.001
Hemisphere �13.22 (�23.90 – �2.54) �2.46 0.016
Group �32.67 (�48.52 – �16.82) �4.10 <0.001
State 9.17 (�1.51 – 19.85) 1.70 0.092
Group:Hemi-sphere 20.86 (5.33 – 36.39) 2.67 0.009
Group:State 26.61 (11.08 – 42.14) 3.40 0.001

Random Effects
r2 483.20
s00 sub_ID 135.67
N sub_ID 32

Observations 127

Dummy coding was used for predictor variables, with reference levels of lesioned mo
hemispheric inhibition (IHI) for l-M1 in stroke at rest. For single predictor variables, neg
while positive beta coefficients indicate a decrease in estimated IHI relative to the inter
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3.3. Motor state effects on IHI

State-dependent effects for short IHI targeting l-M1 in stroke
versus nd-M1 in controls are shown in Fig. 4A and Table 1. There
was no significant difference in l-M1 IHI between rest and active
states in stroke [State: b(CI) = 9.17 (�1.51 – 19.85), t91.64 = 1.70,
p = 0.092] (Fig. 4A-i). In contrast, controls demonstrated a reduc-
tion in nd-M1 IHI between rest and active states [Group � State:
b(CI) = 26.61 (11.08 – 42.14), t91.42 = 3.40, p = 0.001] (Fig. 4A).
State-dependent differences between groups were also observed
for long IHI (Fig. 4B, Table 1). There was a decrease in l-M1 IHI from
rest to active states in stroke [State: b(CI) = 14.46 (0.17 – 28.74),
t91.93 = 2.01, p = 0.047] (Fig. 4B-i). However, IHI modulation across
states was larger in controls compared to stroke [Group � State: b
(CI) = 23.95 (3.17 – 44.72), t91.62 = 2.29, p = 0.024] (Fig. 4B). Overall,
the direction and magnitude of IHI modulation was highly variable
across stroke participants, with the largest state-dependent group
differences pertaining to short IHI targeting the l-M1 (Fig. 4A).
3.4. Associations of IHI with upper limb motor impairment and
mirroring activity

We observed no significant correlations between l-M1 short IHI
at rest and the motor impairment score or mirroring activity
(Fig. 5A and B, top row). In contrast, a larger decrease in l-M1 IHI
(i.e., more release of inhibition) with activity was associated with
more motor impairment (r = �0.55, pcorr = 0.046) and greater mir-
roring activity (r = 0.55, pcorr = 0.046) (Fig. 5C and D, bottom row).
Those with more motor impairment also showed greater mirroring
activity (Fig. 5E; r = �0.80, pcorr = 0.0006).
3.5. Exploring neurophysiological mechanisms of state-dependent IHI

At rest, CSE in stroke was not significantly different across the
two hemispheres [Hemisphere: b(CI) = 104.37 (�1108.94 –
1317.68), t89.33 = 0.17, p = 0.87], nor was it different between stroke
and control for the target M1 (l-M1 vs nd-M1) [Group: b
(CI) = 739.86 (�259.63 – 1739.35), t106.12 = 1.47, p = 0.15]. There
was no interaction between Group and Hemisphere, indicating
similar CSE at rest across hemispheres and between groups
[Group � Hemisphere: [b(CI) = �802.04 (�2054.46 – 450.38),
t89.31 = �1.27, p = 0.21]. There was a significant 3-way interaction
between Hemisphere, State, and Group [b(CI) = �2312.74
(�4076.65 – �548.84), t89.10 = �2.61, p = 0.011], which appear to
be driven by a Group � State interaction for the target M1 (l-M1,
Long IHI

df b (95% CI) Statistic p df

89.93 85.67 (72.58 – 98.76) 12.97 <0.001 110
91.64 �16.29 (�30.58 – �2.01) �2.27 0.026 91.93
88.58 �29.84 (�48.74 – �10.93) �3.13 0.002 109.4
91.64 14.46 (0.17 – 28.74) 2.01 0.047 91.93
91.42 17.61 (�3.17 – 38.39) 1.68 0.096 91.62
91.42 23.95 (3.17 – 44.72) 2.29 0.024 91.62

865.49
61.03
32

127

tor cortex (l-M1), stroke, and rest. The intercept represents the estimated inter-
ative beta coefficients indicate an increase in estimated IHI relative to the intercept
cept. p-values were estimated using Satterthwaite method.
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nd-M1) (Fig. 6A) but no Group � State interaction for the condi-
tioning M1 (nl-M1, d-M1) (Fig. 6B). This was confirmed with sep-
arate two-way mixed effects models for each hemisphere. For
the target M1, muscle contraction (active state) resulted in an
increase in CSE modulation in l-M1 in stroke [State: b(CI) = 1155.
80 (322.46 – 1989.14), t29.87 = 2.83, p = 0.008]; however, the mag-
nitude of modulation was smaller in stroke compared to controls
[Group � State: b(CI) = 2256.13 (1052.62 – 3459.64),
t29.50 = 3.83, p = 0.001] (Fig. 6A). For the nontarget-M1, CSE in
the nl-M1 (ipsilateral to FDI contraction) increased relative to rest
[State: [b(CI) = 1253.38 (583.89 – 1922.87), t30.00 = 3.82, p = 0.001].
However, the magnitude of CSE modulation was similar to that of
controls [Group � State: b(CI) = �49.83 (�1027.68 – 928.03),
t30.00 = �0.10, p = 0.92] (Fig. 6B). These results indicate that
stroke-related alterations in CSE are specific to state-dependent
modulation in the l-M1.

The overall regression model for IHI modulation using CSE mod-
ulation as a predictor was significant (F5,25 = 4.43, p = 0.005,
R2 = 0.47, Adj. R2 = 0.36). In stroke, larger increases in l-M1 CSE
(more positive DTS CSE) predicted larger increases in IHI (more
negative DIHI) with activity (p = 0.009). This pattern was absent
in controls, evidenced by a DTS � Group interaction (p = 0.031)
(Fig. 7). Differences in DIHI were not predicted by DCS CSE (nl-
M1) (p = 0.38) nor an interaction between DCS CSE and group
(p = 0.20).
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4. Discussion

The present study investigated state-dependent changes in
intercortical interactions targeting the l-M1 and nl-M1 post-
stroke and their association with upper limb motor behavior. Com-
pared to older adult controls, stroke survivors demonstrated
reduced l-M1 IHI at rest and reduced l-M1 IHI modulation with
voluntary paretic contraction. This pattern was observed for both
short and long IHI, suggesting a global downscaling of intercortical
interactions post-stroke. While controls demonstrated a consistent
release of inhibition with activity, IHI modulation was variable
across stroke survivors. The novel finding is that release of inhibi-
tion with activity was related to lower motor function and greater
mirroring activity in stroke.

The predominant framework for motor recovery and rehabilita-
tion post-stroke has largely been based on the interhemispheric
imbalance model (Boddington and Reynolds, 2017; Hummel and
Cohen, 2006). Despite earlier literature that suggested greater nl-
M1 activity, and hence greater inhibition onto l-M1, was associated
with paretic motor impairment (Duque et al., 2005; Murase et al.,
2004; Ward and Cohen, 2004), recent literature has found opposite
or no relationship between IHI and motor impairment
(Cunningham et al., 2015; Mang et al., 2015; Takeuchi et al.,
2010; Xu et al., 2019). Our results counter the classical model given
that there was reduced IHI targeting l-M1 relative to nl-M1. The
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lack of consistent evidence on whether there is a true ‘‘imbalance”
of IHI post-stroke reflects the complex nature of cortical interac-
tions underlying stroke recovery.

Reduced nl-M1 IHI at rest has been shown in the acute and sub-
acute stage (Bütefisch et al., 2008), but typically normalizes in the
chronic stage (Duque et al., 2005; Murase et al., 2004). Consistent
with this notion, we found that nl-M1 IHI was similar to that of
controls. In contrast, l-M1 IHI at rest was reduced relative to con-
trols. Reduced l-M1 IHI at rest may reflect the reduced capacity to
generate IHI, which is mediated by excitatory transcallosal projec-
tions onto intracortical inhibitory networks, which then inhibit
corticospinal output neurons (Reis et al., 2008). In the current
study, we did not measure other circuits, such as short-
164
intracortical inhibition (SICI) that mediate IHI but speculate that
reduced l-M1 IHI at rest may be a function of abnormal SICI or
other local circuits in either hemisphere.

Stroke-related alterations in IHI during volitional contraction
have primarily been inferred from the iSP. Though iSP is thought
to share overlapping mechanisms with long IHI (Avanzino et al.,
2007; Chen et al., 2003), the dual-coil TMS approach may offer
additional insight into state-dependent changes in IHI interactions
that may be more functionally relevant to motor behavior. Healthy
adults demonstrate release of inhibition during motor preparation,
while chronic stroke survivors demonstrate persistent inhibition
(i.e., less modulation) with preparatory activity (Murase et al.,
2004; Xu et al., 2019). Here, we extend these findings by demon-
strating that stroke survivors also show less IHI modulation with
tonic contraction. Contrasting with those previous reports, we
found that chronic stroke survivors with greater release of IHI with
activity had more impaired motor function. A positive association
between greater inhibition to l-M1 during contraction and better
motor function is similar to findings using the iSP method (Mang
et al., 2015; Takeuchi et al., 2010). Together, greater inhibition to
l-M1 may represent a compensatory mechanism IHI supporting
post-stroke motor function.

The conflicting relationships between IHI and motor impair-
ment despite using a similar methodology (dual-coil TMS) to quan-
tify IHI from the nl-M1 to the l-M1 during contralateral movement
are difficult to interpret. One possible explanation relates to differ-
ent levels of motor impairment. Murase et al. (2004) studied eight
participants with relatively mild impairment, with an average MRC
of the finger of 4 (max 5) and ability to perform finger tapping.
Similarly, Xu et al. studied 21 participants who at 6 months post-
stroke had UEFMA scores ranging from 44–66 (mean of 64). Our
study is novel in that we tested 18 participants of varied motor
impairment with SAFE scores ranging from 2–9 (max 10) and
UEFMA scores ranging from 18–66 (mean of 48). A second possibil-
ity is that mechanisms mediating IHI modulation during motor
preparation and volitional tonic contraction may be distinct.
Future research is needed to characterize IHI during both motor
preparation and tonic contraction in the same cohort to better
understand state-dependent IHI circuitry post-stroke.

To our knowledge, only one other study has investigated the
effects of tonic contraction on short IHI in chronic stroke
(Dimyan et al., 2014). In a small cohort, they also found a positive
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relationship between IHI modulation and manual dexterity. At first
glance, our findings of reduced IHI modulation post-stroke appear
to be consistent with their observations. However, we assessed IHI
from the resting M1 to the active M1 during contralateral contrac-
tion (contralateral to the target hemisphere) whereas the previous
study assessed IHI in the opposite direction: IHI from the active to
the resting M1 during ipsilateral contraction (ipsilateral to the tar-
get hemisphere). Taken together, stroke survivors appear to have
reduced interhemispheric network flexibility across motor states
at the group level, but have unique individual differences in their
global and local inhibitory/excitatory circuitry that may lead to
the reduced IHI modulation during volitional contraction that
relate to motor impairment in specific ways.

Further support for altered state-dependent neurophysiology
post-stroke is the finding that there was reduced CSE modulation
in l-M1, but not nl-M1 in the stroke group, compared to the control
group. The lack of hemisphere or group differences in CSE at rest
highlights the importance of characterizing CSE during an active
state. Our results indicate that nl-M1 CSE modulation was not dif-
ferent between groups, and increased IHI modulation was more
related to a lack of l-M1 CSE modulation with activity. Importantly,
CSE modulation only predicted IHI modulation when the target
hemisphere was the lesioned side in the stroke group suggesting
that the mechanisms of IHI modulation are likely different post-
stroke and specific to the lesioned hemisphere. Together, these
findings raise the question of whether altered state-dependent
IHI in stroke is a true reflection of interhemispheric circuits or if
it is driven by CSE in l-M1. It’s also possible that IHI is influenced
by other local intra-cortical circuits (e.g., intracortical inhibition).
While the majority of studies in stroke have probed intracortical
circuitry at rest (McDonnell and Stinear, 2017), Ding and col-
leagues demonstrated that atypical SICI was only observed during
voluntary motor tasks performed with the paretic limb: reduced
SICI within the lesioned hemisphere during voluntary activity,
but not at rest, was associated with greater motor dysfunction
(Ding et al., 2019). Future research is needed to characterize
state-dependent SICI and other excitatory/inhibitory circuits
(Avanzino et al., 2007; Cabibel et al., 2020; Reis et al., 2008) in con-
junction with IHI assessments within the same stroke cohort to
better understand complex cortical circuit interactions that may
be altered after stroke.

Previous research in neurotypical adults suggests that short and
long IHI may be mediated in part by different mechanisms, with
long IHI being more similar to circuits probed by iSP, and also
may be differentially modulated by age and tonic contraction of
the contralateral limb (Chen, 2004; Chen et al., 2003; Talelli
et al., 2008). To our knowledge, this is the first study reporting
state-dependent modulation of long IHI in chronic stroke survivors.
Extending reports of reduced short IHI modulation during move-
ment preparation (Murase et al., 2004; Xu et al., 2019), we found
that long IHI modulation during contraction was also reduced in
stroke patients. The similar pattern of short and long IHI in stroke
again supports a more generalized downscaling of cortical activity.
Our results are consistent with a recent study in healthy young
adults that showed that short and long IHI circuits are similarly
modulated by tonic contraction (Turco et al., 2019). Therefore,
short and long IHI may still be mediated by distinct circuits that
show similar state-dependency, or are actually more similar phys-
iological phenomenon than initially suggested.

Unintended mirror movements of the nonparetic limb during
paretic voluntary contraction are common after stroke, and may
be associated with the severity of motor impairment, but are rarely
directly assessed together with IHI measures to examine relation-
ships with interhemispheric interactions. Consistent with past lit-
erature (Kim et al., 2003; Nelles et al., 1998), we found patients
who present with greater mirror activity in the nonparetic side
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during voluntary contraction of the paretic hand had greater motor
impairment. Our current understanding of mirroring activity post-
stroke is largely based on fMRI (Calautti and Baron, 2003; Ejaz
et al., 2018; Kim et al., 2003; Willer et al., 1993). Mirroring may
reflect bilateral recruitment of sensorimotor cortices, particularly
in stroke survivors with severe motor impairment (Kim et al.,
2003). However, bilateral activation has been observed in patients
without mirroring activity (Cramer et al., 1997), suggesting that nl-
M1 activation may be compensatory in some stroke survivors. A
more recent longitudinal study found that while mirroring reduces
as hand function improves it was not associated with cortical acti-
vation of either l-M1 or nl-M1 (Ejaz et al., 2018).

One challenge with understanding mirroring based on fMRI is
that one cannot infer the contributions of specific excitatory or
inhibitory networks, such as IHI circuits probed with TMS. In neu-
rotypical adults, mirroring was associated with reduced short IHI
during ipsilateral contraction (i.e., ipsilateral to the target M1)
(Fling and Seidler, 2012; Hübers et al., 2008). Here we assessed
IHI in the M1 contralateral to the contracting hand. If IHI is simi-
larly reduced for ipsilateral and contralateral contraction, as sug-
gested by Turco et al. (2019), then it may not be surprising that
stroke survivors with reduced IHI show greater mirroring activity.
However, since release of IHI with activity is the neurotypical pat-
tern observed here and in previous literature (Murase et al., 2004;
Xu et al., 2019), the present results are intriguing. Since CSE mod-
ulation in lesioned M1 was reduced and predicted IHI modulation
in stroke but not controls, we speculate that the mechanisms of IHI
are different between stroke and healthy adults. In healthy adults,
reduced IHI with activity was associated with cortical map expan-
sion (Turco et al., 2019). This may be the predominant mechanism
of IHI observed in controls, which would result in inhibition of the
contralateral hemisphere to suppress mirror movements. In stroke
survivors, especially those who are more impaired, there may be
less capacity to expand the cortical map in l-M1, evidenced by
reduced modulation of CSE in lesioned M1; instead, reduced IHI
with activity is likely mediated by other inter- or intracortical net-
works, potentially through circuits in the non-lesioned hemi-
sphere. As the non-lesioned hemisphere may serve a
compensatory role in more impaired stroke patients (Di Pino
et al., 2014), the net result may be a reduced ability to suppress
mirroring activity. In more mildly impaired individuals, other net-
works within the lesioned hemisphere may have the capacity to
modulate with activity to prevent mirroring activity. Indeed, indi-
viduals with greater ability to modulate l-M1 CSE showed less IHI
modulation with activity. Therefore, while IHI networks may be
less flexible in mildly impaired stroke, network flexibility in other
circuits in the lesioned hemisphere may inhibit mirroring activity.
While we can only speculate on the mechanisms of mirror activity
and IHI post-stroke, our findings are consistent with Takeuchi
(2010) that demonstrated that mirroring was more common in
those individuals with reduced inhibition from nl-M1 to l-M1
using the iSP method (Takeuchi et al., 2010). Together, reduced
inhibition with activity may be a compensatory mechanism under-
lying mirror movements in those with poor motor function. Mirror
movement may be an informative behavioral phenomenon that
reflects differences in interhemispheric communication and motor
impairment but a greater understanding of the underlying connec-
tion between mirroring, motor impairment and atypical neural
network interactions will be required.
5. Conclusion

State-dependent interactions between hemispheres were
reduced after stroke, and were related to individual differences in
paretic motor impairment and nonparetic mirroring activity.
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State-dependent interactions between hemispheres may also offer
a neurophysiological mechanism of mirroring activity, a sign of
abnormal motor control in more impaired stroke survivors. Greater
release of inhibition with activity in more impaired stroke sur-
vivors suggests that IHI circuitry is complex and cannot be
explained by the interhemispheric imbalance model. Further
investigations of state-dependent neurophysiological measures
post stroke may elucidate underlying mechanisms of functional
plasticity during recovery and in response to rehabilitative inter-
ventions, which will contribute to the development of more effec-
tive interventions to enhance motor recovery post-stroke.
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