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Abstract
Objective. Finger dexterity, and finger individuation in particular, is crucial for human movement,
and disruptions due to brain injury can significantly impact quality of life. Understanding the
neurological mechanisms responsible for recovery is vital for effective neurorehabilitation. This
study explores the role of two key pathways in finger individuation: the corticospinal (CS) tract
from the primary motor cortex and premotor areas, and the subcortical reticulospinal (RS) tract
from the brainstem. We aimed to investigate how the cortical-reticular network reorganizes to aid
recovery of finger dexterity following lesions in these areas. Approach. To provide a potential
biologically plausible answer to this question, we developed an artificial neural network (ANN) to
model the interaction between a premotor planning layer, a cortical layer with excitatory and
inhibitory CS outputs, and RS outputs controlling finger movements. The ANN was trained to
simulate normal finger individuation and strength. A simulated stroke was then applied to the CS
area, RS area, or both, and the recovery of finger dexterity was analyzed.Main results. In the intact
model, the ANN demonstrated a near-linear relationship between the forces of instructed and
uninstructed fingers, resembling human individuation patterns. Post-stroke simulations revealed
that lesions in both CS and RS regions led to increased unintended force in uninstructed fingers,
immediate weakening of instructed fingers, improved control during early recovery, and increased
neural plasticity. Lesions in the CS region alone significantly impaired individuation, while RS
lesions affected strength and to a lesser extent, individuation. The model also predicted the impact
of stroke severity on finger individuation, highlighting the combined effects of CS and RS lesions.
Significance. This model provides insights into the interactive role of cortical and subcortical
regions in finger individuation. It suggests that recovery mechanisms involve reorganization of
these networks, which may inform neurorehabilitation strategies.

1. Introduction

Humans, like other higher mammals, exhibit incred-
ible finger dexterity. The skillful ability to move one
or more fingers independently enables a large motor
repertoire inmammals with prehensile digits. We rely
on the ability to individuate fingers in a variety of
daily activities, such as typing, tying shoelaces, or
handling utensils and various tools. Thus, any injury

or pathology that interferes with finger individu-
ation negatively impacts quality of life. After stroke,
most people suffer fromdistalmovement impairment
which frequently manifests itself as both a decrease
in finger strength and prominent deficit in hand dex-
terity. This is reflected by increased finger enslaving,
or unintended force produced by the uninstructed
fingers (i.e. inadequate finger individuation) [1–7].
Although a stroke patient may functionally recover
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the ability to flex and extend all fingers simultan-
eously, the finger individuation ability often remains
deficient. A longitudinal study that tracked finger
individuation in stroke patients throughout the acute,
sub-acute, and chronic phases revealed that recovery
of finger individuation remains far from the level of
healthy individuals and tends to plateau between 3–
6 months after the stroke event [5]. Nevertheless, the
neural mechanism by which recovery of finger indi-
viduation occurs is still unclear.

Previous studies have shown the crucial role
of the corticospinal tract (CST), originating from
the primary motor cortex (M1) and the premo-
tor cortex, in fractionated finger movements [8–10].
Experimental lesions or injury of the motor cortex
or corticospinal (CS) region produce a serious detri-
ment to individuated finger movements, resembling
that seen in humans after stroke [8, 11, 12]. Recovery
of finger dexterity from cortical lesions also reveals
interesting results about the involvement of subcor-
tical regions. In particular, the reticulospinal tract
(RST), which originates from the reticular forma-
tion in the brainstem, was reported to undergo func-
tional changes by modulating its activity after CS
lesions during a fine independent finger movement
task [13–15]. Direct lesion of the brainstem medial
reticulospinal (RS) region, on the other hand, affected
mainly posture, strength, and grossmovements, while
hand function remained unaffected [16]. In paral-
lel, it seems that the CS and RS both have roles in
control of contraction force, though the RS may be
directly related to control of gross force production,
whereas the CS may relate more to the control of fine
movements [17].

These observations suggest the existence of a
neural circuit with interactive dynamics between the
CS and RS that receives inputs (i.e. movement com-
mands) and produces the necessary motor outputs
(i.e. finger movements). Critically, changes in the
connectivity at all levels seems to play a pivotal role
in shaping recovery of finger movement after a brain
lesion [15]. How exactly the cortical-reticular circuit
reorganizes and contributes to the recovery process
of finger individuation after stroke remains an open
question.

We investigate how the cortical-reticular circuit
may reorganize by developing a physiologically based
computational model that is able to predict healthy
behavior of finger movement, as well as behavior
during the recovery period early after stroke. To
date, most related works in modeling motor recov-
ery have been limited to simulating either only wrist
flexion force, or single-finger strength and indi-
viduation compared to the rest of the fingers [18,
19]. In particular, Norman et al [18] presented a
computational neural network model based on a
stochastic reinforcement algorithm for a one-finger

task and separately simulated the force patterns of the
instructed finger (index) and the uninstructed finger
(middle) in a non-lesioned normal mode, then inde-
pendently in a lesioned stroke mode. Simulating the
normal condition separately from the stroke condi-
tion limits the mechanistic understanding of how the
network reorganizes and contributes to the recovery
process of finger individuation after stroke. Here we
present a complete solution that stems from a single
simulation of a network at different conditions. This
advance is crucial to better understand the possible
neurophysiological mechanisms that might underlie
stroke recovery.

In the present study, we built a novel artificial
neural network (ANN) model of the hand upper
neuromotor system that simultaneously models two
fingers, alternating between instructed and unin-
structed modes with different force levels. Our ANN
model captures residual capacity and dynamics at the
cortical, subcortical and behavioral levels of finger
recovery following a stroke. Importantly, our solution
is complete in that once initialized to the ‘normal’
condition (i.e. prior to stroke), it is capable of simu-
lating the different stages of the cortical motoneurons
throughout the stroke event and the recovery process.

Notably, the structure of our ANN followed nor-
mal anatomical connectivity constraints to impose
physiologically-based structure on known features of
cortical and subcortical connectivity [20, 21]. This
structure allowed the ANN to seek an optimum over
a very broad range of dynamics, not limited by prior
knowledge of finger recovery. The model findings
also predict that post-stroke CS/RS integrity is correl-
ated with level of finger dexterity recovery; a finding
which can be validated in a clinical setting and, if suc-
cessful, could inform patient treatment.

2. Methods

2.1. Model description
We developed a clustered ANN model constructed
from 3 layers: input, hidden and output (see figure 1,
ANN Architecture Diagram). The input layer rep-
resents the commands for finger movements gener-
ated by the pre-motor cortical area. The hidden layer,
the computational heart of the model, represents the
cortical primary motor neurons and the brainstem
reticular neurons in the medulla/pons. The output
layer represents the task action outcome of the CST
and RST driving the spinal motoneuron pools and
muscles.

2.1.1. Input layer
The input layer is composed of two movement
command inputs (see section 2.2.1, Mathematical
Definition, CMD), one for each of the two fingers,
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Figure 1. ANN Architecture Diagram. The inputs represent the pre-commands generated in the pre-motor cortex division relative
to the two fingers. The hidden layers represent the primary motor cortex division (CS) and other sub-cortical motor regions (RS)
involved in the control of voluntary movement. The outputs represent the CST and RST of each finger. Different colors represent
different functions and/or a different finger. The neurons are represented by small circles (empty circles= neurons ‘disabled’ by
stroke, filled circles= healthy neurons). Dotted circles and lines represent the backpropagation flow. Abbreviations:
CS—corticospinal, RS—reticulospinal. Note that inhibitory CS neurons represent excitatory pyramidal tract neurons that project
to inhibitory spinal interneurons.

indicating whether each finger is instructed or unin-
structed. The desired force level that the instructed
finger should apply is encoded within the command
value of the instructed finger. There is no force level
for the uninstructed finger since it should not apply
force, and any force resulting from the simulation is
considered enslaving (unintended force production).
Four combinations for the command movement
inputs can be defined for the two fingers, depending
on the desired task (e.g. 100% force): instructed/un-
instructed (1, −1), uninstructed/instructed (−1, 1),
instructed/instructed (1, 1) and uninstructed/unin-
structed (−1, −1). In this study, we focused on
the first two commands (i.e. 1/−1 or −1/1) as they
demonstrate individuation between the two fingers.
The encoded force in the instructed finger command
is in the range of (0,1], representing the entire pos-
sible force range from 0% to 100% of the maximum
force. The value 0 is an illegal value for the instructed
finger command. The value −1 for the uninstructed
finger command represents zero force.

2.1.2. Hidden layer
The hidden layer is based on a simplified structure of
themotor control areas, representing separablemotor
control functions and organized into four different
groups: for fine movement, two dedicated focal CS

neuron groups, each including excitatory and inhib-
itory neurons, and one shared excitatory CS neuron
group, and for grossmovement, one shared excitatory
RS neuron group [13, 22, 23]. Each finger’s neuron
cluster is a combination of its dedicated excitatory
and inhibitory focality groups and the shared CS and
RS groups [13]. The hidden layer state variables (see
section 2.2.1, Mathematical Definition, HO) hold the
intermediate hidden layer neurons’ output values.
Note that the ‘inhibitory neurons’, referred to as such
for simplicity, represent excitatory pyramidal neur-
ons that project to inhibitory spinal interneurons,
therefore resulting in an inhibitory effect [24, 25].

2.1.3. Output layer
The output layer has four force outputs, two associ-
ated with each finger (see section 2.2.1, Mathematical
Definition, FO), one for the CST and one for the
RST. The expected outputs are the outcomes of
the instructed/uninstructed fingers’ commands (see
equation (8)).

2.1.4. Input layer to hidden layer connectivity
The fingers’ command inputs (instructed/uninstruc-
ted) are connected to all hidden layer neurons [26],
with the exception that each command affiliated to
one finger does not connect to the inhibitory neuron
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group of the other finger. Inhibitory neurons con-
stitute 20% of the total neurons in the hidden layer,
split between the two fingers [27]. The strength of
the connectivity between the layers is described by the
connection weights (see section 2.2.1, Mathematical
Definition, WH). A focal neuron in our network
(either excitatory or inhibitory) may be defined as a
neuron that can be driven by multiple neurons, but
is able to drive only one downstream neuron, or can
be driven by a single neuron while driving multiple
downstream neurons. A shared CS or RS neuron is
defined as a neuron that can be driven by multiple
neurons and is able to drive multiple downstream
neurons.

2.1.5. Hidden layer to output layer connectivity
The hidden layer neurons are connected to the out-
put layer neurons (finger outputs). Each finger is
associated to two outputs (CST and RST outputs),
and the connectivity is based primarily on each fin-
ger’s cluster. Each finger’s CST output is driven inde-
pendently by its cluster of neurons and from the
shared CS neurons. The inhibitory neuron groups
also drive their affiliated finger’s RST output, while
the RS neuron group drives both fingers’ RST out-
puts. Again, connectivity strength between the lay-
ers is represented by the connection weights (see
section 2.2.1, Mathematical Definition, WO).

2.1.6. Bias parameters
Bias in neural networks involves amathematical oper-
ation that can be thought of as analogous to the role
of a constant in a linear function, whereby the line
is effectively translated by the constant value. Both
the hidden layer and output layer neurons connect to
bias constants. We added these constants to the sum
of the inputs to the neurons and used them to shift
the input values so that the outputs of the compu-
tation functions fit within the desired range of out-
put values. The bias is required when the summed
weighted inputs of each neuron require adjustment
before applying the activation function and allows the
NNmodel to optimally fit data (see additional details
in section 2.2.1, Mathematical Definition, in particu-
lar BH and BO).

2.2. Model definition
The ANN model is characterized by three key fea-
tures. (1) The number of residual neurons in the
hidden layer is inversely proportional to the mag-
nitude of the lesion overlap with the CS region and
the deficit (i.e. ‘dead’ neurons) in the RS region. The
degree of residual motor function is highly depend-
ent on lesion load in the CS region (i.e. CST integ-
rity), but not necessarily on lesion size per se [28–
32]. (2) The force that each finger muscle generates
is determined by the weighted sum activities of cor-
tical and sub-cortical neurons in the hidden layers.

Muscle force production is typically proportional to
the firing rate of neurons in the motor cortex [17,
33]. We therefore assumed that increase in the firing
rate of a single neuron caused proportional increase
inmuscle force, up to a saturation limit, with the pro-
portionality constant determined by the connection
weights. (3) Lastly, we assumed that the motor sys-
tem must find this solution by evaluating the results
of task performance based on the deviation of the net
force output of the fingers from the desired force tar-
gets (i.e. error function as teaching signal).

This type of error-based learning uses sum-
mary feedback of motor performance to update
synaptic weights and can be achieved with com-
putations implemented locally at synapses and is
thus considered biologically plausible. We per-
form feedforward-propagation followed by a back-
propagation iterations algorithm to optimize for the
results convergence. We compare the task perform-
ance in each feedforward pass and the error function
is minimized during the back-propagation pass. The
iterations are repeated until reaching or approaching
the global minimum of the error function.

2.2.1. Mathematical definition
The fingers’ command input variables,
CMDi; i=1:NI∈{2,3,4,5}, (see section 2.2.2,
Initialization and Parameter Setting, NI= 2, Finger
1 Command and Finger 2 Command in figure 1) are
used to capture a semi-binary-type (instructed/unin-
structed) movement task that is required from each
finger. The command’s binary movement informa-
tion is encoded as+1/−1 rather than 1/0 to represent
instructed/uninstructed movement tasks (a value of
0 does not work well with the ANN inputs, as all
computation results would be zero regardless of its
weights). The force parameter is defined as a number
in the range of (0,1], indicating a percentage of full
force, and encoded into the instructed finger com-
mand (a value of 0 is not allowed, as movement can-
not be achievedwith zero force, a value of 1 represents
100% of the force). The force parameter, FRC, is asso-
ciated with the instructed finger (or fingers) based on
the command input variables.

The commands, CMDi, are weighted by the
weight links connecting the inputs to the hidden
layer neurons: WHij;i=1:2,j=1:N, (see section 2.2.2,
Initialization and Parameter Setting, N= 400). The
weighted commands, (CMDi ×WHij) i=1:2,j=1:400,
transform to values in the open interval (−1, 1). The
appropriate weighted inputs are summed to values in
the range of (−∞,+∞) and fed to a corresponding
activation function of each hidden layer neuron. We
use the sigmoid function,

f(x) =
1

(1+ e−x)
, (1)
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as the activation function. Here, the input to the hid-
den layer activation function,

xj;j=1:400 =
2∑

i=1

(
CMDi ×WHij

)
j=1:400

+BHj;j=1:400, (2)

is the sum of the weighted commands that project
to any one given hidden layer neuron, plus a corres-
ponding bias, BHj;j=1:400 (described below), and is in
the range of (−∞,+∞), representing the summed
firing rates of the neurons. The output values of the
function, ranging in (0,1), represent the weighted
activity of the neurons.

The biases, BHj are used to shift the activation
function of the hidden layer neurons and stabilize the
learning process. These biases shift the neurons’ sig-
moid activation functions (equation (1) to the desired
range of values (see section 2.1.6, Bias Parameters).
Because the inputs to the hidden layer affiliated with
the instructed finger must be positive values (reflect-
ing excitatory activity), without bias the outcome val-
ues of the activation function (equation (1)) willmost
likely be in the upper range of (0,1), e.g. [0.5,1) (sig-
moid of x ⩾ 0). The lacking portion, (0,0.5), of the
desired range, (0,1), can only be reached when apply-
ing the sigmoid function to negative input values.
Without bias, the weights WHij would then start to
switch to negative values during the learning pro-
cess of the ANN, contradicting the excitatory context.
Thus, the output of the hidden layer activation func-
tion is tuned to the range of (0,1) using the bias. The
inhibitory neurons are negated using a dedicated hid-
den layer status variable, NSj;j=1:400. When NSj = 1,
this indicates an excitatory neuron, while if NSj =−1,
it indicates an inhibitory neuron. A lesion is applied
using this same status variable. That is, each CS or
RS neuron is initialized to 1 or −1 for healthy/active
neurons and switched to 0 for ‘dead’ (inactive) neur-
ons due to stroke. The hidden layer neuron outputs
are then defined as:

HOj;j=1:400 =NSj;j=1:400 × f. (3)

These intermediate outputs, HOj, are then
weighted via the weight links, WOjk;j=1:400,k=1:NO,
(see section 2.2.2, Initialization and Parameter
Setting, NO= 4, represents the 4 finger outputs: CST
and RST for each of the 2 fingers). These weighted
outputs,

(
HOj ×WOjk

)
j=1:400,k=1:4

, yield new val-

ues in the range (0,1). The sum of the appropriate
values, within the range (−∞,+∞), are fed into the
corresponding activation function of the output layer
neurons, again the sigmoid function (equation (1)).
The biases, BOk, are used to shift the output layer
activation function in order to tune the output to the
range (0,1) and stabilize the learning process. Despite
the existence of the inhibitory neurons that enforce

negative values, the summed inputs of the activation
functions corresponding to these outputs still require
tuning to the desired range. Thus, in general, for any
given neuron in the output layer,

xk;k=1:4 =
400∑
j=1

(
HOj ×WOjk

)
k=1:4

+BOk;k=1:4.

(4)

The outputs of the activation function at the out-
put layer represent the force outputs of CST and RST,

FOk;k=1:4 = f, (5)

for the two fingers as a percentage of relative force
of the movement (0—no force, 1—full force). The
instructed finger will show actual instructed force,
while the uninstructed finger will simultaneously
‘unintentionally’ activate and show the uninstructed
(i.e. involuntary) force.

In addition, we defined mask variables to con-
trol the interactions between different layers. They
enforce connectivity limitations between different
groups of neurons, as they represent different motor
functions (simplified motor divisions) that do not
necessarily directly interact. To model the interaction
between the input and hidden layer groups of neur-
ons, inhibitory masks, IMij;i=1,2, j=1:400, are defined.
Inhibitory neurons of one finger are affected by their
associated finger command, but not by the other fin-
ger’s command (hence, IM1jand IM2j reflect this).
For the interaction between the hidden layer and fin-
ger output layer, finger masks, FMjk;j=1:400, k=1:4, are
defined. Focal neurons (excitatory and inhibitory) for
each finger output tract (k= 1,2 for Finger 1 CST
and RST, respectively; k= 3,4 for Finger 2 CST and
RST, respectively), are selected using its correspond-
ing masking vector.

The expected finger output, EFOk;k=1:4, is derived
from the movement task inputs, CMDi, and the force
parameter, FRC. For this purpose, we define the
scaled command, sCMDi;i=1:2 {1→ 1;−1→ 0} as,

sCMDi;i=1:2 = (1+CMDi;i=1:2)/2, (6)

and enslaving command, eCMDi;i=1:2 {(1,0)→ (0,1);
(0,1)→ (1,0); (1,1)→ (0,0); (0,0)→ (0,0)} as

eCMDi;i=1:2 =max(sCMDi;i=1:2)− sCMDi;i=1:2. (7)

In this way, we ensure that the enslaving has no effect
in the case of the instructed finger, and FRC is irrel-
evant in the case of the uninstructed finger.

Note, we define the enslaving function (i.e. 0.06×
FRC× eCMDi + 0.02× eCMDi) as a linear equation
within the calculations of expected outputs EOi:

EOi;i=1:2 = (FRC× sCMDi + 0.06× FRC

× eCMDi + 0.02× eCMDi)i=1:2 . (8)

5
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Thus, pre-processing calculations of expected finger
output yield:

EFOk;k=1:4 = [EO1,EO1,EO2,EO2] . (9)

The error function for each finger output tract k,

Ek;k=1:4 =−(EFOk − FOk)k=1:4, (10)

is defined as the difference between the expected fin-
ger output EFOk;k=1:4 (equation (9)) and actual out-
put FOk for each finger separately.With backpropaga-
tion iterations, using a gradient descent technique,
the optimal weights to minimize the error function
(equation (10)) are determined. First, the derivative
for the k output layer outputs of the sigmoid function
(equation (1)) is calculated:

∂Ok;k=1:4 = (FOk × (1− FOk))k=1:4. (11)

The output delta error for each finger output k is:

δOk;k=1:4 = (Ek × ∂Ok)k=1:4. (12)

The hidden to outputs weights delta correction is:

δWOT
kj;k=1:4,j=1:400 =

(
δOT

k ×HOj

)
k=1:4;j=1:400

.

(13)

Then, weights associated with each finger output
k of the connections j between the hidden and output
layers are calculated backwards using the delta correc-
tion, as follow:

WOjk;j=1:400,k=1:4

=
(
FMjk ×

(
WOold

jk − η× δWOjk

))
j=1:400,k=1:4

.

(14)

The output delta error (equation (10)) is also
backward propagated to the derivative of the hidden
layer neurons’ sigmoid function (equation (1)), and
results in:

∂HOj;j=1:400 =
(
HOj ×

(
1−HOj

))
j=1:400

. (15)

The hidden delta error for each hidden
neuron j is:

δHOj;j=1:400 =
((

δOk ×WOT
kj

)
k=1:4

× ∂HOj

)
j=1:400

.

(16)

And the inputs to hidden weights delta
corrections,

δWHij;i=1:2,j=1:400 =
(
CMDT

i × δHOj

)
i=1:2;j=1:400

,

(17)

are calculated and applied to update the input to hid-
den layer weights WHj:

Hij;i=1:2,j=1:400

=
(
IMij ×

(
WHold

ij − η× δWHij

))
i=1:2, j=1:400

.

(18)

To assess the performance of the model, we
assessed dexterity with respect to finger individuation
and strength for each simulation. In order to calculate
the individuation index I, the weighted contributions
of the forces from the CST and RST of each finger are
first used to calculate fine motor forces (FineMotor1
and FineMotor2 for fingers 1 and 2, respectively), as
follows:

FineMotor1= 0.75 ∗ FO1 + 0.25 ∗ FO2, (19)

FineMotor2= 0.75 ∗ FO3 + 0.25 ∗ FO4. (20)

That is, the fine motor force for each finger is cal-
culated as 75% of the CST output and 25% of the
RST output. The individuation index I between the
two fingers is then defined as the absolute value of the
ratio of the difference between the fine motor force
outputs to their sum [18]:

I= |(FineMotor1 − FineMotor2)

(FineMotor1 + FineMotor2)| . (21)

In order to calculate the gross force for each finger
(Force1 and Force2), we use different weighted con-
tributions of the CST and RST outputs as follows:

Force1= 0.25 ∗ FO1 + 0.75 ∗ FO2, (22)

Force2= 0.25 ∗ FO3 + 0.75 ∗ FO4. (23)

2.2.2. Initialization and parameter setting
We set the global parameters to configure the main
structure of the NN, e.g. the number of hidden layer
neurons (N = 400), number of inputs (NI = 2), and
number of outputs (NO= 4).Wedefined the depend-
ent parameters to configure the inner structure of the
neural network, including the distribution of neur-
ons in the hidden layer. The neurons are divided as
follows: 40% are focal CS neurons, consisting of 20%
excitatory and 20% inhibitory neurons. Additionally,
20% of the total neurons are shared (i.e. global) CS
excitatory neurons, while the remaining 40% are RS
excitatory neurons. We used the training and sim-
ulation related parameters to control the learning
process, error correction resolution steps (η = 0.01),
training cycles as number of days (nDays = 360),
and training repetition in each training cycle as daily
dosage ([50, …, 50, 200, …, 200, 50, …, 50, 0, …, 0]
vector of dosage values per day), defined differently
for every stage of the training.

6
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For setting up the NN structure we used mask
and status variables, IMij, FMjk, and NSj, respectively
(see section 2.2.1, Mathematical Definition), based
on the functions’ connectivity between the layers
and pre/post stroke status as described in section 2.1
(Model Description and figure 1, ANN Architecture
Diagram).

The initial weights of the NN were normally dis-
tributed numbers generated from the open inter-
val (0,1) (∼ normal

(
µ= 0.5, σ2 = 1/12

)
) that were

then masked using the mask variables, IMij and FMjk,
while the non-connectedweights were eliminated (set
to ‘0’).

The bias constants were generated similarly to
the NN weights to provide additional differentiation
among different neurons’ activation functions. They
were added as additional parameter inputs to the
neurons of the hidden and output layers. These biases
were used to compensate for the nature of the input
values from one layer to another and the dependen-
cies between the excitatory and inhibitory clusters,
and adjust the distribution of the summed values
within the desired range of the activation function for
a better fitting. The bias setting process required sev-
eral trial-and-error tests before selecting optimal val-
ues for the NN model best fit. The hidden layer bias
was set to ‘-6’ and the output layer bias was set to ‘-1’.

2.2.3. Training and simulation methods
For training the ANN, not to be confused with, and
not meant to simulate human motor training, the
commands of the two fingers (CMD1,CMD2) are fed
as inputs to the ANN. The performance of the fingers,
i.e. the outputs of the ANN (FO1,FO2,FO3,FO4), are
calculated in a feedforward propagation. The error
function is calculated and minimized in every iter-
ation of the training process using gradient des-
cent in a backpropagation flow (see section 2.2.1,
Mathematical Definition). The training for the ini-
tial normal condition is achieved by applying amulti-
day and recurrent dosage force-based motor task to
the ‘normal’ (i.e. healthy) pre-stroke ANN, starting
from an initially randomized state and converging to
the desired instructed finger command behavior. The
simulation data is collected throughout the training
process for later post-processing and demonstration.

We simulated a stroke by disabling a portion of the
neurons in the hidden layer of the trained ANN, sim-
ulating lesion overlap in the CS region, as well as RS
deficit [34], in proportion to the severity of the stroke,
using theNS variable (see section 2.2.1,Mathematical
Definition). Each cluster of neurons is affected to the
same extent in this case, depending on stroke sever-
ity. To emphasize this, the lesioned state is reflected
by the actual outcome of the injured trained model
without further training. In addition to simulating a
combined stroke affecting both CS and RS neurons,
we also simulated stroke in the CS or RS regions sep-
arately by disabling a portion of the neurons in only

the CS region or only the RS region. The force-based
motor commands are simulated at the stroke condi-
tion and the fingers’ outcome values are collected. In
conjunction with the stroke, we reduce the learning
capability (η) in accordance with the lesion severity.
As assumed, injured brain plasticity is affected, and
hence motor learning ability might be reduced.

Immediately after the lesion, the recovery pro-
cess of the residual ANN represents the recovery that
typically occurs at the early post-stroke phase and
may continue up until the chronic phase. The ANN
is trained following the same method applied during
the initial stage, and the simulation data is collected as
well, but with the stroke condition as a starting point.

Since we use all variants of movement commands
for training, no additional validation is required for
testing the converged NN; however, the quality of the
NN convergence is highly dependent on initial val-
ues of the weights and, in some cases, needed several
trials to reach the optimal NN for the various simula-
tion applications. Configuring different ANN setups
is done by setting new values for theANNglobal para-
meters. In addition, the training could be tuned with
number of days of recurrent loops with configured
dosage iterations and learning factor.

2.3. Statistical analysis
Statistical comparison between synaptic weights of
the residual hidden layer neurons before and after
stroke was conducted using a paired two-tailed
t-test. Specifically, we compared how the differ-
ent weights were conditioned when re-trained after
stroke. Significance level for all tests was set at 0.05.

3. Results

3.1. Finger strength and individuation in normal,
lesioned and recovered condition
The ANNmodel was first initialized to some interme-
diate force, startingwith randomly generatedweights,
and then trained for two fingers (Finger 1 and Finger
2) to a pre-stroke condition by applying the set of
commands alternately to each finger in the same
training set. At the end of this initialization pro-
cess, the ANN was fully capable of the trained motor
functionality of the two fingers for the selected com-
mands. The simulation data was collected through-
out the training convergence and demonstrated the
model behavior of this stage. The simulation showed
the individuation between the instructed/uninstruc-
ted fingers (i.e. maximizing the instructed force and
minimizing the uninstructed force) and the enhance-
ment in the strength of the fingers (see figures 2(A)
and (B), respectively) for post 50% stroke in the
CS and RS regions, CS region only, and RS region
only. Prior to stroke, the instructed force reached
93.04%, 93.25%, and 93.4% of the maximum force
for Finger 1 in the CS and RS regions, CS region only,
and RS region only conditions, respectively. For these
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Figure 2. Finger individuation and strength before and after stroke in the CS and RS regions only, CS region only, and RS region
only, as predicted by the model. (A). Finger individuation for pre-stroke phase training, in which maximum individuation was
achieved, at applied stroke event (50% stroke for each condition), showing individuation reduction between the two fingers, and
recovery early after stroke, demonstrating partial recovery of individuation. (B). Finger forces of Finger 1 (instructed) and Finger
2 (uninstructed) during pre-stroke phase training, in which max instructed force and min instructed force are achieved, at
application of stroke event, showing lesion acute phase degradation in instructed force and increase in
uninstructed/unintentional force, and recovery early after stroke showing enhancement in instructed and uninstructed force
behavior. The purple arrow indicates the immediate effect of the stroke on behavior. Command Simulation for all conditions:
Finger 1 instructed, Finger 2 uninstructed, Force 100%, Stroke 50%.

same conditions, the uninstructed involuntary force
reached 11.15%, 11.76%, and 11.14% of the max-
imum force, respectively, for Finger 2. Before applica-
tion of stroke, the individuation between Finger 1 and
Finger 2 for all three conditions wasmeasured as 0.78.

A stroke event was applied by deleting 50% of
the neural network from the hidden layers, simulat-
ing 50% lesion load in the CS region and 50% neur-
onal deficit in the RS region, 50% lesion load in theCS
region only, and 50% deficit in the RS region only, for
the CS and RS regions, CS region only, and RS region
only conditions, respectively. The three simulations
were executed at this point and exhibit the behavior of

the impaired model via a drop in the instructed force,
rise in the uninstructed force and detriment to the
individuation between the two fingers (see figure 2).
The instructed force of Finger 1 reached 33.37%,
57.15%, and 44.6% of the maximum force for the
three conditions, respectively, while the uninstruc-
ted force of Finger 2 reached 28.29%, 25.26%, and
23.12% of the maximum force for the three condi-
tions, respectively. The individuation was calculated
as 0.17, and 0.39, and 0.66, respectively.

Following the stroke event, i.e. proceeding from
the stroke condition state, the model was trained
using the same training method to regain some
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Figure 3. Uninstructed forces as a function of instructed finger strength. Model prediction (left) vs. clinical measurements (right):
Recovery effect on finger individuation as predicted by the model and as observed in a stroke patient. (A). Forces in the
uninstructed finger plotted against the force generated by the instructed finger at multiple force amplitudes as predicted by the
model. Lines represent normal pre-stroke phase (black), acute phase (light grey), post-recovery (induced spontaneously or with
training early after stroke) and chronic phase (dark grey). Model parameters: (Finger 1 instructed, Finger 2 uninstructed, Stroke:
50%, Forces: 40%, 50%, 75%, 100%). (B). Reduced enslaving in the individuation task in a stroke patient (data from [7]). Forces
of the non-instructed finger as a function of the forces in the instructed finger for the non-paretic hand reflecting the pre-stroke
baseline level (black), early after stroke (light grey) and after training (dark grey). Note that while force was measured in N for the
stroke patient (B), force is represented as % of max for the model (A). Maximum force for the instructed and uninstructed finger
is not necessarily equivalent and thus comparison between A and B of proportion of uninstructed to instructed force should not
be made, but rather only between the general pattern of behavior.

enhancement of the motor behavior and to repres-
ent the recovery early after stroke. Similar to the pre-
stroke stage, simulation data was captured through-
out the training process up to the limit of the impaired
ANN convergence. We observed a rise in the instruc-
ted force and drop in the uninstructed force, lead-
ing to enhancement in the individuation (see figure 2,
post-stroke recovery). The instructed force of Finger
1 reached 44.33%, 86.53%, and 46.03% of the max-
imum force for the three conditions (i.e. CS and RS
regions, CS region only, and RS region only), respect-
ively, while the uninstructed force of Finger 2 reached
26.02%, 19.85%, and 22.58% of the maximum force
for the three conditions, respectively. The individu-
ation was calculated as 0.5, 0.63, and 0.67, respect-
ively.

In comparing between the three stroke condi-
tions, it can be seen that finger individuation was
most damaged by stroke in the CS andRS regions, fol-
lowed by the CS region only, and then the RS region
only. Finger forces, again, were most impaired by
stroke in the CS and RS regions. However, here, RS-
only stroke shows worse force profiles than CS-only,
exhibiting greater reduction in instructed finger force.
Enslaving in the CS-only stroke was slightly worse
than RS-only stroke in the acute post-stroke phase.

3.2. Increased activation of uninstructed finger as a
function of instructed finger strength
Next, we sought to explore the relationship between
the force of the uninstructed finger for different force

levels of the instructed finger. To test this relation-
ship in our model, we repeated the simulations with
different force targets and measured the involuntary
uninstructed force from Finger 2 and the instructed
force fromFinger 1 in the different phases (pre-stroke,
early after stroke, and after training) of these simu-
lations for each force target. In figure 3(A), we plot-
ted uninstructed vs. instructed forces (normalized to
max force) of our simulation, and compared them
to similar clinical results, in figure 3(B), of a stroke
patient fromMawase et al [7] (measured inNewtons).
The y-axis represents the uninstructed finger force
(i.e. involuntary force) corresponding to the applied
force of the instructed finger as shown on the x-axis.
The slope ratio represents the individuation ability of
the instructed finger.We see that early after stroke, the
uninstructed finger force increased (i.e. reduced indi-
viduation) to more than it was in the normal/non-
paretic case in both the model and stroke patient
graphs.

As expected, after training (e.g. induced by
spontaneous recovery and/or additional rehabilitat-
ive training), we observed that the model predicted
reduced involuntary uninstructed force (i.e. increased
individuation) that was closer to a normal level
(figure 3(A), Model Prediction). Quantitively, this
reduction was captured by the slope of a linear regres-
sion line that was fitted to each data set and showed an
almost flat line (slope = 0.12, with 95% CI of 0.085–
0.15) in the normal condition (i.e. before stroke), sub-
stantial increase in slope (slope = 0.54, with 95% CI
of 0.05–1.03) immediately after stroke and reduction
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Figure 4. Effect of stroke severity on instructed vs uninstructed fingers. Model parameters: (Stroke 10%–100%, Force 100%).
Simulations: All are trained similarly during pre-stroke phase, then stroke with different severity (simulating % CS overlap and %
RS neural deficit) is applied. We recorded the results early after stroke at sub-acute phase, then during recovery in chronic phase
and at the end of rehabilitation effort. (A). Individuation between instructed and uninstructed fingers in accordance with stroke
severity. The graph demonstrates that the greater the stroke severity, the more severe the stroke effect on individuation, and the
less likely recovery is after stroke. Stroke severity⩽40% has relatively minimal effect on the individuation and recovery. (B). The
dynamics of finger strength following lesion with different percent stroke severity. In the instructed finger (blue lines), the greater
the stroke severity, the less instructed force that can be produced by the model, starting with the light blue capturing the forces
early after stroke, the darker blue during recovery and darkest blue at end of rehabilitation process. Recovery increases from the
acute post-training phase, i.e. increase in instructed force. The uninstructed force (light red lines) is inversely affected by the
stroke severity early after stroke and during recovery. After training, however, the uninstructed force (dark red) is directly affected
by stroke severity, as seen by reduced uninstructed force levels compared to what is predicted early after stroke.

(slope= 0.39, with 95% CI of 0.06–0.71) after recov-
ery. This instructed-uninstructed finger force rela-
tionship replicated what we have previously reported
in human stroke patients (figure 3(B), Stroke Patient:
shows actual data from a stroke participant during
an individuation task [7]). Note that in figure 3 we
compare the non-paretic hand of the stroke patient
to the normal condition of themodel. While the non-
paretic handmay be affected to some extent by stroke,
we cannot obtain ‘normal condition’ data from stroke
patients, and thus the non-paretic hand served as the
closest approximation to the normal condition.

3.3. Effect of CS-lesion overlap and RS deficit on
finger individuation
We measured the effect of stroke severity on finger
individuation during the acute phase and after train-
ing (figure 4(A)). We then tested a resulting assump-
tion that effect of CS-RS lesion load on finger indi-
viduation was driven by the relative changes between
instructed and uninstructed fingers. To test this, we
measured the effect of stroke severity, as predicted
by the model, on the instructed and uninstructed
forces early after stroke and after recovery comple-
tion (i.e. after training). We plotted the uninstruc-
ted and instructed forces vs. stroke severity on the
same plot for comparison (figure 4(B)). A large CS-
lesion load in our model was presumed to reflect a
large infarct in the cortical CS region. Ourmodel pre-
dicted that small to moderate lesion overlap (i.e. up
to 10%–40% of the total neurons in the hidden layer
CS and RS regions) results in relatively small degrad-
ation in individuation (figure 4(A)), and less degrad-
ation in instructed and uninstructed forces compared

to larger lesion overlaps (figure 4(B)). In moderate to
large strokes (i.e. 50%–70% of hidden layer CS and
RS neurons), we see a quite drastic negative effect of
the stroke on individuation in the acute phase, with
substantial but incomplete recovery after the train-
ing process. Detriment to instructed and uninstruc-
ted forces in the acute phase was more pronounced
in this range of lesion overlap, with noticeable but
incomplete recovery following training that asymp-
totes to levels well below full recovery. These below-
normal-function levels were related to the severity of
the stroke and the amount of training induced by the
model. Finally, the model predicted that severe lesion
in the range of 80%–90% caused a nearly complete
drop in finger individuation that cannot be effectively
restored, and additional training enhancements were
nonexistent. With respect to finger forces, there was
a detriment to uninstructed finger forces (enslaving)
at the severe level that compares to the higher end of
the moderate stroke severity level, and detriment to
instructed finger force that was greater than all other
stroke severity levels. Here too, training did not lead
to visible recovery.

3.4. Changes in synaptic weights in residual CS and
RS during stroke recovery
The observation of improved finger individuation
after stroke is classically believed to be associated
with plasticity changes in network connectivity of the
residual neurons. Here, we investigated how the con-
nectivity strength of the model changed during the
recovery process, i.e. how the different weights were
conditioned when re-trained after stroke. We evalu-
ated a representative case, 100% force and 65% stroke
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Figure 5.Weight Gain Histograms for Model Simulation. Model Simulation Parameters: (Finger 1 instructed, Finger 2
uninstructed, Stroke 65%, Force 100%). (A). Weights of focal CS excitatory neurons to CST output increased for Finger 1 and
decreased for Finger 2. (B). Weights of global CS excitatory neurons to CST output increased for Finger 1 and decreased for Finger
2. (C). Weights of focal CS inhibitory to CST output decreased for Finger 1 and increased for Finger 2. (D). Weights of focal CS
inhibitory to RST output decreased for Finger 1 and increased for Finger 2. (E). Weights of RS neurons (global excitatory) to RST
output increased for Finger 1 and decreased for Finger 2. (F). Simplified representation of the network architecture derived from
detailed architecture in figure 1; red arrows—reduction in weights, green arrows—increase in weights. Abbreviations:
CMD—command, CS—corticospinal, RS—reticulospinal. ∗∗ indicates p< 0.001.

severity, which demonstrated the recovery enhance-
ments in both force and individuation of the two fin-
gers (figure 5).

We found increased plasticity of the residual CS
and RS neurons, as reflected by weight gain increase
or decrease from the hidden layer neurons to the fin-
ger outputs of the instructed and uninstructed fingers
(paired t-test; p < 0.001 for all results). Specifically,
for Finger 1 (instructed), weight gains increased
for all excitatory neurons to their associated out-
puts (i.e. focal and global CS excitatory neurons to
Output1, and RS neurons to Ouput2 of Finger 1;
see left graphs in figures 5(A), (B), (E) and (F)).
This was accompanied by a decrease in weight gains
in all inhibitory neurons to their associated outputs
(i.e. focal CS inhibitory neurons to Output1 and
Output 2 of Finger 1; see left graphs in figures 5(C),
(D) and (F)). For Finger 2 (uninstructed), weight
gains decreased for all excitatory neurons to their
associated outputs (i.e. focal and global CS excitat-
ory neurons to Output1, and RS neurons to Ouput2
of Finger 2; see right graphs in figures 5(A), (B),
(E) and (F)). This was accompanied by an increase
for all inhibitory neurons to their associated out-
puts (i.e. focal CS inhibitory neurons to Output1 and
Output 2 of Finger 2; see right graphs in figures 5(C),
(D) and (F)). In summary, improved finger individu-
ation was achieved by strengthened connectivity of all
excitatory neurons, and weakened connectivity of all
inhibitory neurons, projecting to both outputs of the
instructed finger, as well as weakened connectivity of
all excitatory neurons, and strengthened connectivity

of all inhibitory neurons, projecting to both outputs
of the uninstructed finger.

3.5. Robustness analysis
In order to test the robustness of our network, we
conducted a comprehensive analysis to assess the sta-
bility and reliability of our neural network model
under varying conditions. Specifically, we artificially
injected noise (normally distributed) with variable
standard deviations at two points in the model: (1)
Initial values of weight links WO (see section 2.2.1,
Mathematical Definition); We applied noise ([0.05-
2.25]) to theweight linksWO. The starting conditions
were drawn from a diverse pool of values, represented
on the x-axis in figure 6. (2) Hidden output activation
function; We also introduced noise ([0.01-0.675]) in
the calculation of the hidden output activation func-
tion, shown on the y-axis in figure 6. To evaluate the
impact of these variations, we compared the results
against a reference model representing a 65% stroke
in both the CS and RS regions. Our comparison met-
rics included the RootMean Square Error (RMSE; see
figure 6(A)), regression coefficients (see figure 6(B)),
and the explained variation (VAF; see figure 6(C))
between the model’s outputs and the reference data.

Our analysis revealed that the error (RMSE)
remained relatively low and within acceptable limits
when the variance of noise in the hidden output func-
tion was below∼0.21 (y-axis) and when the variance
of the initial weight WO was below ∼1.25 (x-axis).
This indicates that the model’s predictions are robust
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Figure 6. Robustness testing of the ANN model of finger individuation. Noise was injected into the system in two different places:
(1) the initial values of WO (weights of the hidden-to-output layer), where the noise was sampled from a normal distribution
with variance ranging from 0.01 to 0.675, and (2) in the output activation function (output sigmoid function), where the noise
was sampled from a normal distribution with variance ranging from 0.05 to 2.25. A. Root Mean Square Error (RMSE) between
the model output and a reference output, using a 65% stroke in both CS and RS neurons. B. Regression coefficient between the
model output and the reference outcome as a function of noise level. C. Variance Accounted For (VAF) metric, showing the
proportion of variance in the reference outcome explained by the model output across different noise levels.

at low noise levels in both the hidden output activ-
ation function and the initial weight of the hidden-
to-output layer. The regression coefficients and VAF
showed consistent patterns but were less sensitive to
noise in the initial weight WO, suggesting that the
model primarily maintains its predictive accuracy in
the hidden output function. These results highlight
the model’s robustness to internal noise, reliably pro-
ducing outputs that align with expected physiolo-
gical behavior in stroke-affected CS and RS systems.
This robustness ensures that the model’s predictions
are not overly sensitive to specific assumptions or
parameter settings, enhancing its applicability to real-
world physiological conditions.

4. Discussion

In the present study, we designed an ANN model
with physiologically-based architecture that models
recovery of finger dexterity after stroke. Our cent-
ral result is that an ANN trained to produce fin-
ger individuation exhibited dynamics that strongly
resemble that of healthy individuals and patients after
having recovered from a stroke. The resemblance
between themodel outcome and reported data in pre-
vious clinical works wasmanifested by the substantial
reduction of finger individuation immediately after
stroke [2, 7], the recovery pattern following train-
ing, the near-linear relationship between uninstruc-
ted and instructed finger forces and the relationship
between size of CS-RS-lesion overlap and severity of
impairment in finger individuation [5–7]. Notably,
we did not achieve this by fitting the ANN to actual
clinical data. Rather, the agreement between model
outcome and clinical data emerged as a result of the
architecture of the excitatory/inhibitory cortical CS
and subcortical RS neuron pools needed to generate
the normal patterns of individuation. Importantly,
once initialized to pre-stroke condition, our solution
is capable of simulating dynamic functional capacity
of the cortical motoneurons throughout the lesion

event and the recovery process that follows. In addi-
tion, the model makes predictions that might provide
mechanistic explanation about the functional reor-
ganization of the cortical and subcortical network
during recovery of control of finger movement.

Our modeling study provides a framework by
which to understand a number of experimental
findings related to finger dexterity. First, the pat-
tern of instructed forces, uninstructed forces and
individuation in a normal condition, as seen in
figure 2, mimics the convergence relation between the
instructed to uninstructed force levels as observed in
humans and primates [8, 10]. Second, the immedi-
ate ANN response to the simulated stroke event in
the CS and RS regions revealed increased involun-
tary uninstructed forces that were driven by weak-
ening of the instructed finger and exaggerated force
of the uninstructed finger. This is in agreement
with documented clinical observations of acute post-
stroke phase finger functionality in which post-stroke
patients exhibit reduced instructed finger force capa-
city and increased uninstructed forces [3, 35]. Third,
the model exhibited how the impaired motor sys-
tem re-adjusted and learned new neural activation of
the residual cells to compensate for the loss in fin-
ger control during the recovery process. Behaviorally,
we observed an increase in the instructed force
and decrease in the uninstructed force, and eventu-
ally enhancement in finger individuation during the
recovery period. This is in line with recent studies
that showed meaningful improved, yet incomplete,
finger individuation during the early months after
the stroke event [5, 22]. We were also able to sim-
ulate strokes in the CS region only and in the RS
region only. Our findings further suggest the exist-
ence of a neural circuit with interactive dynamics
between the CS and RS regions that processes fin-
ger commands to produce the necessary motor out-
puts, such as force and/or individuated finger move-
ments. Notably, our model’s results align with the
seminal works of Lawrence and Kuypers (1968) [8,
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16], demonstrating that lesions in the CST dramatic-
ally impair finger individuation, while lesions in the
RST primarily affect finger strength and, to a lesser
extent, individuation. Furthermore, recovery from
stroke-related finger control deficits involves changes
in the neurons within the residual CST and RST, as
previously observed inmonkey studies by Zaaimi et al
[15].

It is of special note that our general model archi-
tecture is based on that of Norman et al [18] (which
is itself based on the model of Reinkensmeyer et al
[36] that simulates wrist flexion and extension fol-
lowing stroke). However, there are numerous import-
ant differences. (1) Norman et al do not describe an
input layer, and they have a single finger individu-
ation task in which the objective is to perform max-
imum force with the instructed finger and minim-
ize force from the uninstructed finger. They do not
support variable instructed force values, and the res-
ulting output forces are determined wholly by the
weights and a saturation function, and are updated
until the maximal/minimal forces are achieved. We,
on the other hand, describe an input layer in which
the finger individuation task is determined by the
two finger inputs (specifying which finger is instruc-
ted) and the encoded force that can be any instruc-
ted force in the range of (0,100%], representing the
whole human range of possible dexterous individu-
ation actions (see section 2.1.1, Input Layer). The
encoded force has a direct impact on the input to
the hidden layer CS and RS neurons, along with the
weights, which are updated until the output force is
as close as possible to the instructed force, and the
uninstructed force is minimized. This being the case,
we were able to simulate the relationship between
instructed and uninstructed forces throughout the
whole range. (2) We use backpropagation for our
learning algorithm instead of reinforcement learning.
Backpropagation has also been suggested to employ
biologically plausible features and is the most com-
mon type of learning used in these types of neural net-
work applications, shown in general to better repres-
ent observed neural responses thanmany other learn-
ingmodels [37]. (3) Importantly, we simulate a single
network in different conditions, rather than two sep-
arate lesioned and non-lesioned networks, allowing
us to simulate a more ‘naturalistic’ event of stroke
and recovery. We use this single network over ‘nat-
ural’ time which first undergoes learning to reach the
normal healthy condition, then undergoes neuronal
death to simulate the stroke condition, and finally
undergoes recovery and neurorehabilitative training.
In contrast, Norman et al used two separate networks,
and the lesioned network was not the same network
that was already trained to the healthy condition. (4)
Amajor advancement over the previous Norman et al
model is the ability of the present model to simulate
stroke in multiple locations (i.e. CS and RS regions,
CS region only, and RS region only). This approach

makes our model more modular and physiological
and provides an important basis for adding more
complexities in future study.

4.1. Cortical-subcortical neural basis of finger
individuation
Ourmodel predicts post-lesion plasticity in both cor-
tical and subcortical areas for recovery of finger dex-
terity. While strengthening of the connectivity in the
residual descending cortical pathway seems to con-
tribute to a larger extent to fractionating fingermove-
ment, strengthening of the RST seems to compensate
for the loss of finger strength [15]. Inspection of
changes in synaptic weights during stroke recovery as
predicted by themodel revealed plasticity in the resid-
ual CS and RS. Specifically, we observed strengthen-
ing of theweights of the focal and global cortical excit-
atory CS neurons to the instructed finger CST and
RST outputs, as well as global excitatory RS neurons
to the RST output. Strengthening of the weights to the
CST output indicates enhancing the individuation
and, to some extent, the force of the instructed fin-
ger. Additionally, strengthening the weights between
the RS neurons, that serve for applying force, and
RST output has a faciliatory effect on the strength of
the instructed finger. On the other hand, we repor-
ted weakening of the weights that connected the focal
inhibitory CS neurons to both the CST and RST out-
puts of the instructed finger. This reduced contribu-
tion inversely affected the individuation and force of
the instructed finger, and thus weakening them is in
favor of individuation.With respect to the uninstruc-
ted finger, we observed weakening of the focal and
global cortical excitatory neurons to the uninstructed
finger CST and RST outputs, as well as global excit-
atory RS neurons to the RST output. Weakening of
the excitatory neurons may facilitate minimization of
enslaving of the uninstructed finger by reducing excit-
ation to the fingermuscles.We also reported strength-
ening of the weights that connected focal inhibitory
CS neurons to both the CST and RST outputs of
the uninstructed finger, which may further improve
individuation by inhibiting the uninstructed finger
muscles.

There have been several studies investigating the
residual neurons in the primary motor cortex (M1)
and their role in recovery after a cortical lesion. These
studies often focus on the mechanisms of plasti-
city, reorganization, and the contribution of surviv-
ing neurons to motor recovery in animal models.
For example, Nudo and Milliken [38] demonstrated
that after a focal ischemic infarct in the primary
motor cortex of adult squirrel monkeys, there was
significant reorganization of the remaining cortical
areas. Intensive rehabilitation led to the expansion of
the hand representation into adjacent cortical areas,
indicating that plasticity in the residual neurons can
support functional recovery. Castro-Alamancos and
Borrel [39] also showed that surviving neurons in the
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M1 of rats exhibit increased excitability and synaptic
strength after a lesion. These changes were correlated
with improved motor function during recovery, sug-
gesting that residual neurons adapt to compensate
for the lost function. As for the role of the residual
neurons in the RS and their role in recovery after a
cortical lesion, the study by Zaaimi et al [15] indic-
ated changes in the connectivity of descending motor
pathways, including those from residual neurons in
the RS, after a CS lesion. These changes suggested that
RS systems might sub-serve some of the functional
recovery after CS lesions.

To the best of our knowledge, no studies have
specifically examined changes in inhibitory cortical
neurons during the recovery process related to fine-
motor control of fingers. This area remains essen-
tial for future research. A recent study by Griffin and
Strick [24] demonstrated that cells in the primary
motor cortex (M1) can control the inhibition of
antagonist muscles in wrist movements, doing so
a few milliseconds before activating the agonist
muscles. Whether this mechanism applies to finger
individuation remains to be determined in future
investigations.

4.2. Severity of impairment in finger dexterity
correlated with size of CS-lesion overlap in the
motor cortex andmotor-related subcortical areas
There is mounting evidence suggesting that lesion
load within specific brain areas might be a major
factor in the ability to restore motor function after
stroke, and the improvement, or lack thereof, in
motor activity [40–42]. Several studies have demon-
strated that greater damage to the CS projections is
associated with more impairment in stroke patients
[43–45]. Our model demonstrates the correlation
between lesion load in the CS and RS region and
reduced plasticity of the injured brain, which explains
the (in)ability to restoremotor function in these cases
(figure 4). In our model, a small to moderate lesion
load around 10%–40% induces less impairment in
the motor function compared to greater loads. This
might be explained by the fact that the NN model
is converged to a ‘mathematically’ stable global min-
imum and requires a substantial ‘hit’ to be greatly
disturbed. This aspect of our model is in accord-
ance with clinical data of stroke, as the effects on
function of mild strokes can be difficult to quant-
itatively assess [46–49]. In the range of 50%–70%
lesion load, we can observe a much greater effect of
the stroke event in our model. The modeled acute
phase emphasizes the level of the disturbed motor
function relative to the size of the injured region and
shows that there is still room for a certain amount
of spontaneous recovery of motor capabilities, but
that it is limited inversely to the magnitude of the
lesion severity. In our model, lesion load with more

than 80% dead neurons demonstrates severe impair-
ment of motor function that is almost incapable of
being restored and minimally or not responsive to
rehabilitation. The clinical analogue has been docu-
mented in the literature with poor functional out-
comes for severe stroke and a more difficult challenge
to design and implement rehabilitation protocols
capable of inducing improvements in this population
[50, 51]. Nevertheless, neurophysiological quantific-
ation of residual CS neurons that survive after the
stroke, as well as association between this quantity
and motor impairments, require future research with
high-resolution imaging tools.

For 10%–40% stroke we see relatively sim-
ilar values for instructed and uninstructed force
(figure 4(B)). This is in correspondence to the sim-
ilar pattern of detriment to finger individuation in
this stroke range. For 50%–70% stroke we see a
trend of increasing uninstructed force and decreas-
ing instructed force with stroke size early after stroke
and after training. Interestingly, in the very severe
range of stroke (i.e. >70%), despite abnormalities in
both instructed and uninstructed force patterns, we
observe a trend of decreasing uninstructed force and
decreasing instructed force with increasing stroke size
during the acute and sub-acute (post-training) stroke
phases. A possible explanation for this is that the
model’s post-stroke ‘motor system’, including CS and
RS, has less available neurons that can affect force, and
since the involuntary forces of the uninstructed finger
are linearly affected by the amount of applied force in
the instructed finger, when less instructed force can be
generated by themodel’s ‘motor system’, it will lead to
less uninstructed force as well.

Since individuation (figure 4(A)) is calculated
based on the normalized difference between instruc-
ted and uninstructed fine motor output forces
(figure 4(B)), we observed that immediately and early
after stroke, the magnitude of the decrease in instruc-
ted forces across different lesion loads is greater than
the magnitude of the increase in uninstructed forces.
Consequently, individuation decreases as the CS-RS
lesion load increases. Recovery induced by training
and/or occurring spontaneously caused increase in
the forces of the instructed finger and decrease in
the uninstructed forces. This can be explained as
enhancement in the focal segments, excitatory and
inhibitory weights, with the excitatory neurons pos-
itively affecting the instructed forces and, conversely,
the inhibitory neurons negatively affecting the unin-
structed forces.

Altogether, these results indicate that interact-
ive dynamics between cortical and subcortical neur-
ons could provide a biologically plausible explana-
tion for the recovery of finger dexterity. It is essential
to understand which subsystems contribute to recov-
ery of finger movement in order to provide a rational
basis to develop circuit-level therapeutic strategies
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that will optimize rehabilitation. Some aspects of the
reported finding are in accordance with well-reported
clinical and neurophysiological outcomes, but oth-
ers provided mechanistic prediction of the interact-
ive relationships in the neural network that under-
lie finger dexterity. These predictions can be tested
in future research working primarily with human
and/or animal models that typically exhibit finger
dexterity.

4.3. Limitations of the study
Our model has some limitations. First, in this work
we limited our model to two fingers in order to
demonstrate the potential relevance of our model.
A full model including the entire hand represent-
ing complex multifinger motor behaviors is of ulti-
mate interest, however individuation naturally differs
markedly for each finger, or between each combina-
tion of fingers in multifinger tasks [52–55]. Further,
each of the fingers and each combination of them
have different anatomical constraints with respect
to individuation and strength which may be due to
neural aspects of control for each finger or pattern
of fingers, mechanical coupling constraints that rise
from the different bony and muscular architecture
of each finger, different ligamentous and tendinous
connections, etc [56, 57]. Our model can be expan-
ded to include five fingers, however a complex model
which truly represents the whole hand must take into
account the aforementioned important factors. Our
model may provide an important basis for a more
complex naturalistic model.

In addition, our model has some versatility with
regards to stroke simulations, with the ability to sim-
ulate stroke in the CS and RS regions, CS region only,
and RS region only. This is a substantial advance-
ment over the previous model of Norman et al [18].
However, in the case of stroke in both the CS and
RS regions, the stroke was applied to all segments of
the NN neurons by deactivating the same percent-
age of neurons. This was true for all cluster types
including CS excitatory and inhibitory neurons, as
well as RS neurons. These assumptions do not neces-
sarily represent the real organization of themotor sys-
tem, nor do they reflect how a real stroke lesion may
differently affect motor divisions and representation
of multiple fingers. In fact, it was shown that con-
trol of individuated finger movement is widely dis-
tributed in the primary motor cortex [2], and elec-
trical stimulation often elicited involuntary move-
ments of multiple fingers [10, 58]. Our model in the
present study, for the case of stroke in both the CS
and RS regions, was intended to simulate recovery
from stroke with the residual capacity of both the
CS and RS and thus provides an important basis for
future study, which may simulate stroke to a differ-
ent degree in the CS and RS regions. The scenario
in our present model does not represent all stroke

profiles, however it may be representative of a com-
mon profile, for example with lesion around the
area of the internal capsule, or in general, subcortical
strokes, where the CS and cortico-RS regions are in
very close proximity to each other and are likely both
affected by stroke [34, 59]. In fact, Karbasforoushan
et al [34] examined microstructural damage to vari-
ous sensorimotor pathways, due to unilateral sub-
cortical stroke, using high-resolution structural MRI
of the brainstem and spinal cord—areas where the
pathways can be differentiated, and indeed found that
decrease in white matter integrity of the CST was
accompanied by decrease in integrity of the RST as
well. Regardless, future work is underway to invest-
igate alternate approaches. But importantly, our res-
ults show substantial similarity to clinical works of
the same type, and we believe that our model consti-
tutes an important advancement toward prediction of
recovery of finger dexterity following stroke.

Finally, our model is an oversimplification of the
proposed network that potentially underlies recov-
ery of finger dexterity. Simplification of the pro-
posed ANN model was pronounced in its architec-
ture, including design, connections, and training.
Thus, although our model predicated plausible out-
comes that highly resembled data fromhuman and/or
primate research, it seems that more complex archi-
tecture of neural networks including additional brain
areas, beyond CS and RS regions, must be involved
in control of finger movement. Our present model
represents a specific facet of recovery of hand motor
function following stroke. It was our focus to describe
the specific contributions of the CS and RS regions to
recovery, as evidence suggests that these areas are the
main contributors to control of finger movement [8,
13, 16, 57], and as such, the major regions involved in
the recovery process of finger dexterity [15].However,
for instance, an intriguing but underexplored area
that may contribute to finger control is the magno-
cellular red nucleus in the midbrain and its des-
cending rubrospinal tract (RuST). Many neurons in
the magnocellular red nucleus excite the wrist and
extrinsic finger muscles of the contralateral upper
extremity [60]. However, in humans, themagnocellu-
lar red nucleus is relatively small, and the RuST does
not extend below the upper cervical segments [61].
Thus, the potential role of the RuST in finger con-
trol remains speculative and has not been thoroughly
examined during individuated finger movements in
humans. Consequently, we have chosen to exclude
this area from ourmodel due to the lack of significant
findings confirming or ruling out its contribution in
humans.

4.4. Future directions and summary
As for future directions, though the ANN model
was limited to two fingers for our simulation
requirements, the general model is easily scalable
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to support all fingers. In this case, the level of com-
plexity of the model increases, and the training set
must be revised accordingly, and thus simulation
run time increases substantially. Such enhancements
and/or adding furthermotor-related divisionsmay be
optimally addressed using one of the commonly used
advanced computations. More advanced neural net-
work models or deep learning frameworks might be
used and trained to simulate enhancements in both
strength and individuation in hand motor function,
based on existing clinical experiments and available
data (e.g. size of lesion and affected part/s of the brain
motor divisions).

Our model makes clinically-testable predictions.
For example, it predicts that post-stroke CST/RST
integrity is correlated with improved finger dexter-
ity recovery. This prediction could be verified in a
clinical study wherein CST/RST tractography from
diffusion-weighted MRI is used to predict patient
outcome. This protocol could validate this model
finding and possibly lead to future clinical work that
stratifies patients into therapeutic interventions based
on CST/RST tractography and the model’s predic-
tions of expected recovery. Thus, ultimately, treat-
ment can be planned based on the desired target
goals for finger individuation and/or strength. The
improvement, or lack thereof, in the motor activity
as predicted by the model will help us estimate the
amount of motor recovery of the training dataset.
For example, with respect to our model prediction
for a patient with a pure cortical lesion with 50%
CS region overlap (as could be validated by CT or
MRI scans), our recommendation would be harness-
ing intensive appropriate rehabilitation techniques to
allow the residuals of the affected area to recover.
In this case, this may include more focus on intens-
ive finger individuation training, rather than strength
training. In addition, our model predicts that upreg-
ulating the neurons of the RS system would improve
recovery of finger dexterity. One approach to do this
is by applying brain stimulation techniques targeting
cortical origins of the RST, i.e. cerebro-reticular tract
originating from premotor areas [62]. Indeed, a new
study showed that, in addition to conventional rehab-
ilitation, using invasive deep cerebellar stimulation,
that likely affectedmany brainstem structures includ-
ing the RS formation, improved clinical outcomes in
stroke patients compared to a group that underwent
conventional therapy only [63].
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