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Abstract—Stroke often causes sensorimotor deficits, impair-
ing hand dexterity and disrupting independence for millions
worldwide. While rehabilitation devices leveraging visual and
haptic feedback show promise, their effectiveness is limited
by a lack of perceptual equity, which is necessary to ensure
fair comparisons between sensory modalities. This study refines
cross-modal matching protocols to address this gap, enabling
unbiased evaluation of multimodal feedback. Using the Hand
Articulation and Neurotraining Device (HAND), 12 healthy
participants matched visual and haptic stimuli in a structured
task. A streamlined protocol, requiring just 2-3 blocks and 3
reference intensities, reduced experimental time fivefold while
preserving data integrity. Data were analyzed using linear and
exponential models applied to both full and reduced datasets. The
results demonstrated consistent participant performance across
trials, with higher matching errors at greater stimulus intensities,
likely attributable to sensory saturation effects. Furthermore, the
study offered practical methodological insights, including the use
of reduced data sampling paradigms to enhance experimental
efficiency significantly while preserving data integrity. This work
advances perceptual equity in multisensory feedback systems,
addressing sensory encoding variability to support scalable,
personalized therapeutic strategies for stroke recovery.

Index Terms—Cross-modal Matching, Perception, Haptic
Feedback, Vibrotactile Feedback, Dexterity, Rehabilitation

I. INTRODUCTION

The human hand is fundamental to performing essential ac-
tivities of daily living, such as grasping, manipulating objects,
and executing precise movements. However, hand dexterity
is often compromised by neurological conditions like stroke,
which impacts over 12.2 million individuals globally each
year [1]. The loss of hand functionality not only reduces
independence and quality of life but also places significant
physical, emotional, and economic burdens on individuals [2].

Efforts to address this challenge have driven the develop-
ment of innovative strategies to restore hand dexterity post-
stroke. Among these approaches, hand rehabilitation devices
have shown significant promise by leveraging advancements in
robotics, neurorehabilitation, and haptic feedback to promote
motor recovery and neural plasticity [3], [4]. Despite these
advances, challenges remain in ensuring the accessibility,
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personalization, and effectiveness of these devices to meet the
diverse needs of stroke patients [5].

The Hand Articulation and Neurotraining Device (HAND)
was co-developed by Carducci, Xu, and their collaborators [6],
[7] to explore individuated finger control and multidimensional
co-activation patterns following stroke. Here, we focus on
adapting the HAND device to study the pinch grasp, a critical
fine motor skill required for handling delicate or brittle objects.
Pinch grip deficits, often observed in stroke patients, are
linked to impairments in sensorimotor processing pathways.
These deficits result in diminished tactile and proprioceptive
feedback, reducing the ability to accurately modulate grip
forces and perform everyday tasks independently [8].

While many existing rehabilitation devices rely heavily
on visual feedback for training and recovery [9], evidence
suggests that visual feedback alone is insufficient to optimize
motor recovery outcomes [10]. Recent studies highlight the po-
tential of integrating multisensory feedback, particularly haptic
cues, to promote neural plasticity and enhance functional
motor rehabilitation [11]. In this work, we aim to understand
how multisensory feedback should best be provided in the
HAND device by utilizing visual and haptic cues to augment
somatosensory pathways. By addressing these gaps, this study
contributes to advancing therapeutic strategies and optimizing
neurorehabilitation outcomes for stroke patients.

Sensory and motor deficits arising from stroke manifest in
diverse and highly individualized ways, resulting in variations
in how stimuli are perceived across individuals [10]. To
effectively leverage multisensory feedback in rehabilitation, it
is crucial for sensorimotor tasks to account for such variability
and ensure fairness across modalities. Establishing perceptual
equity—ensuring that any observed differences in performance
between visual and haptic feedback reflect true differences
in sensory encoding rather than biases introduced by the
experimental setup—is essential for accurately comparing
the efficacy of these modalities in healthy participants. This
process, known as cross-modal matching, involves calibrating
sensory intensities to establish a balance between modalities,
enabling fair and unbiased comparisons [12], [13].

Cross-modal matching provides a standardized framework
to evaluate the encoding and integration of sensory information
across modalities, ensuring perceptual equity by aligning stim-
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Fig. 1. A modified Hand Articulation and Neurotraining Device (HAND) [6], [7] setup used in this study. (a) Participants interact with the device by placing
their fingers in silicone cups mounted on an aluminum frame, with vibrating voice coils providing mechanical haptic stimuli. (b) The virtual task includes
a variable-brightness sphere for visual feedback and two user interfaces: the exploration phase, where reference sliders are present, and the matching phase,
where no reference sliders are displayed. (c) Participants, wearing noise-canceling headphones, use a limitless keyboard dial to adjust the intensity of the
feedback presented. Feedback is either haptic—delivered through the HAND device, or visual-rendered within a virtual task.

ulus intensities. This process is crucial for isolating genuine
differences in sensory encoding from biases introduced by
experimental setups. However, it can be time-intensive and
variable between individuals, which poses a significant chal-
lenge, particularly for stroke patients who often experience
fatigue during extended tasks [14]. To address this, one of
the critical aims of this study is to develop pre-study cross-
modal matching protocols that streamline the process, mini-
mize fatigue, and maintain accuracy. Guidelines derived from
studies with healthy individuals will establish a foundational
framework for efficient, reliable methods in future neuroreha-
bilitation research involving stroke patients.

II. METHODS AND IMPLEMENTATION
A. Participants

We evaluated the ability of N=12 individuals with no
history of stroke or upper-extremity disabilities (5 males and
7 females; mean age: 25.2+6.1 years; 9 right-handed, 1 left-
handed, and 2 ambidextrous) to match the intensity of one
feedback modality to an equivalent intensity of another using
a custom rehabilitation interface under two distinct feedback
conditions. Each participant’s handedness was assessed using
the Laterality Quotient derived from the administered Ed-
inburgh Handedness Inventory after obtaining their consent
[15]. The experiment lasted approximately 60 minutes, and
participants were compensated at a rate of $10 per hour. All
participants provided informed consent in accordance with a
protocol approved by the Johns Hopkins School of Medicine
Institutional Review Board (Study #IRB00209185).

B. Experimental Setup

The study utilized a modified Hand Articulation Neuro-
training Device (HAND) built and validated in prior studies
[6], [7]. The HAND device includes two silicone cups mounted
on an aluminum frame, precisely positioned to naturally align
with each participant’s index finger and thumb, allowing for a
customized and comfortable fit as shown in Fig. 1(a). Each cup

is mechanically coupled with a Dayton Audio DAEX13CT-
8 Sound Voice Coil, which provides the vibrotactile haptic
feedback necessary for the tasks.

The voice coils are driven through a custom amplifier
board controlled by a 600 MHz Teensy 4.0 microcontroller.
This microcontroller communicates with the primary control
software, a Python script running on the computer via a serial
interface. The virtual task program transmits 9-bit values to the
Teensy, which adjusts the intensity of the voice coil output.
Upon receiving these values, the microcontroller employs a
MAXS21BCPP digital to analog converter (Maxim Integrated)
and a TPA3122D2 Class-D audio power amplifier (Texas
Instruments) to generate 250 Hz sine waves with a variable
peak-to-peak voltage range of O to 7 V. These signals drive
the voice coils, delivering haptic stimuli to participants.

The virtual task consists of a 3D environment featuring
a centrally positioned, fixed-size gray sphere illuminated by
a distant light source, as shown in Fig. 1(b). The sphere’s
brightness is adjusted to provide visual stimuli, matching the
9-bit resolution used for the haptic stimuli generated by the
voice coils. The virtual environment is created in Python 3.6
and rendered using Panda3D Open Source Framework.

C. Cross-modal Matching Implementation

To ensure fairness and perceptual equity in neurorehabil-
itation experiments, cross-modal matching is essential for
calibrating stimulus intensities across modalities, ensuring
that observed differences reflect genuine sensory encoding
rather than experimental bias. Building on this principle,
we implemented a cross-modal matching task based on the
paradigm developed by Pitts et al. [12], [13], constructing
participant-specific psychometric curves to align haptic and
visual stimulus intensities. The participants were instructed
to sit in front of a monitor running the virtual task, and
rest their hand comfortably on the HAND device as shown
in Fig.1(c). To eliminate potential auditory interference from
the voice coils, participants wore noise-canceling headphones



that played 60 Hz white noise at a comfortable volume. The
experiment was broken into two phases.

1) Intensity Exploration: In the first phase, participants
used a graphical user interface (GUI) to explore the full range
of vibrotactile and visual stimulus intensities for two minutes.
The stimuli were presented continuously, with their intensities
adjustable via a limitless dial on a XPPen ACKOS wireless
shortcut keyboard as shown in Fig. 1(c). Two sliders on the
screen indicated stimulus intensity being presented in real-
time. A clockwise click on the dial increased the intensity,
while a counterclockwise click decreased it by 1 unit within
a range of 0 to 255. A designated button on the keyboard
allowed participants to toggle between the two modalities
during the exploration phase, enabling them to choose which
modality to adjust. Participants were instructed to familiarize
themselves with the full ranges of the haptic and visual stimuli
and their correlation, using the sliders as a reference. They
were informed that the sliders would not be available in the
subsequent phase.

2) Intensity Matching: In the intensity matching phase,
participants were tasked with aligning the intensity of one
sensory modality (haptic or visual) to a reference intensity
provided in the other modality. This involved two distinct
conditions: a haptic reference modality, where participants
matched the visual stimulus to a given haptic intensity, and
a visual reference modality, where they matched the haptic
stimulus to a given visual intensity.

Following this setup, participants completed two experimen-
tal blocks in each condition. Specifically, participants used the
same limitless dial configuration as in the intensity exploration
phase to adjust the intensity of one stimulus to match a given
reference stimulus. However, in this phase, the sliders were
no longer displayed. Participants were allotted 90 seconds to
submit their matched intensity for each trial, after which the
current value was automatically recorded if the time limit was
exceeded. Eight reference intensities, normalized and evenly
distributed within the range of 0 to 1 (excluding endpoints),
were used. The 8 reference intensities were shown 4 times
in a block randomized order for a total of 32 trials. The
sequence of reference intensities was maintained across both
blocks. To ensure balance, the order in which haptic and visual
reference stimuli were presented—whether the haptic or visual
modality served as the reference first—was counterbalanced
across participants.

Upon completing each block, participants completed the
NASA Task Load Index (NASA-TLX) questionnaire to evalu-
ate cognitive workload [16]. At the conclusion of the session,
participants were asked to provide a detailed description of
their strategies for completing the matching trials.

D. Data Analysis

We obtained two datasets for each participant: (1) the visual
reference experiment and (2) the haptic reference experiment.
Before analysis, the matched intensity was normalized such
that values ranged from O to 1. This enabled a one-to-
one relationship between the two modalities. The following

analyses of these datasets will aim to (1) compare participants’
performance across the two experimental conditions and (2)
develop a protocol to help future researchers find participant-
specific models that ensure perceptual equity in multi-modal
motor control experiments.

1) Comparing Data Set and Fit: We compared two dif-
ferent modeling approaches for deriving participant-specific
models: a linear model and an exponential model. The linear
model was selected because the experimental protocol inher-
ently established a linear relationship between the haptic and
visual modalities. Additionally, we included the exponential
model because it has been employed in prior research [13],
[17]. Thus, for each participant and experiment, the observed
data were fit to both linear and exponential models using
MATLAB 2024b’s fitlm and fitnlm functions, respectively.

Prior to model fitting, we applied two distinct data sampling
paradigms. In the first paradigm, referred to as “All Data,”
we used all 32 data points collected across the four blocks,
each consisting of eight reference intensities. In the second
paradigm, referred to as “Average + Origin,” we averaged the
data across blocks at the eight reference intensities and added a
ninth data point at the origin, as it is assumed that participants
can identify when no reference intensity is provided. This
second approach aligns with the methodology used in [17].

In summary, for each participant and each experiment, we
generated a total of four models, combining two data sets
(“All Data” and “Average + Origin”) with two fits (linear
and exponential). For each model, we report the coefficient
of determination, R2, as a measure of the goodness of fit. To
compare each model’s ability to sufficiently describe the data,
we run a 2x2 (2 data sets x 2 fits) ANOVA on RZ>.

2) Finding the Optimal Reduced Fit: To optimize the cross-
modal matching procedure for efficiency, we aimed to deter-
mine the minimum number of blocks and reference intensities
needed to achieve a model fit comparable to that obtained
with the full experimental dataset. To this end, we conducted
a Monte Carlo simulation for each participant, experiment, and
fit. This simulation fit the data under 657 different conditions,
derived as follows: we considered three block configurations
(2, 3, or 4 blocks, preserving their sequential order to simulate
truncated experiments) and all possible subsets of 3 to 8 ref-
erence intensities for each stimulus. The subsets of reference
intensities were determined using the binomial coefficient (Z) s
where n = 8 and k ranged from 3 to 8. Note that a minimum
of three reference points was required for fitting a linear
model. This resulted in S%_, (§) = 219 combinations of
reference intensities. Multiplying these 219 combinations by
the three block configurations yielded 657 total conditions. By
systematically varying these parameters, we aimed to identify
an experimental design that balances efficiency and accuracy
by minimizing the cost function:

" blocks intensities
cost = .
4 8

where blocks is the number of blocks used, intensities is the
number of intensities used. x1 error and xo error represent

-10- (21 error+xg error) (1)
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Fig. 2. Linear and exponential fits for a representative participant (Participant
10) in the cross-modal matching experiment. Subplots include: (a) visual
modality as the reference (All Data), (b) visual modality as the reference
(Average + Origin), (c) haptic modality as the reference (All Data), and (d)
haptic modality as the reference (Average + Origin).

the deviation between the model’s coefficients fitted to the
subset of data and the model’s coefficients fitted to the full
dataset. A weighting factor of 10 was applied to the error
term to more heavily penalize deviations from the original fit,
ensuring that the reduced dataset maintains consistency with
the full dataset’s fit.

After running the simulation, we identified the best fit
for each case as the one that minimized the cost function
defined in Eq. 1. This process yielded 24 optimal fits (12
participants x 2 experiments) for each data set. To compare the
characteristics of these optimally reduced fits, we conducted
a paired Student’s ¢-test to evaluate differences in the number
of intensities, number of blocks, z; error, x> error, cost, and
R? across the datasets.

3) Task Performance: We also sought to understand how
participants’ performance varied between the two experiments.
To quantify performance, we calculated participants’ error
as the absolute difference between the normalized matched
intensity and the normalized reference intensity error =
|matched — re ference|. Recall in Section II-C, the relation-
ship between the two modalities was inherently linear; after
normalization, this relationship became one-to-one. Therefore,

& 0.5
0
All Data Average + Origin
b)
U 0.5+
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Fig. 3. Average coefficient of determination, R% 4 1 standard deviation
for each dataset and fit across participants, with (a) visual modality as the
reference and (b) haptic modality as the reference.

if participants had a perfect understanding of the underlying
relationship, their normalized matched intensity would equal
the normalized reference intensity.

To compare performance across experiments, we conducted
a paired Student’s t-test on the average error for each par-
ticipant (averaged across all trials within each experiment).
Additionally, we tested whether reference intensity or fatigue
influenced performance. For reference intensity, we averaged
each participant’s error across trials at each intensity level and
fit a linear model to error as a function of reference intensity. A
significant slope would indicate that reference intensity affects
performance. For fatigue, we averaged each participant’s error
across trials within each block and fit a linear model to error as
a function of block. A significant positive slope would indicate
a decline in performance over time.

We analyzed NASA-TLX data using a two-way ANOVA
to evaluate the effects of reference modality and category
(mental demand, physical demand, temporal demand, effort,
frustration, and perceived performance) on subjective work-
load ratings. If a significant effect was found, post-hoc paired
Students’ t¢-test were used to identify any significant differ-
ences between subcategories.

All data processing and statistical analyses were performed
using custom scripts in MATLAB 2024. The significance level
for statistical tests was a = 0.05.

ITI. RESULTS
A. Comparing Data Set and Fit

Fig. 2 illustrates the linear and exponential fits for a repre-
sentative participant, providing a visual comparison of model
performance. The models were assessed using the coefficient
of determination, R2, as a measure of goodness of fit.

Fig. 3 shows the average R? across participants separated
by experiment, data set, and fit. Table I shows how each of the
4 models performed, in describing a participant’s experimental
data. Of note, all models were statistically significant. A 2x2
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Fig. 4. Optimal reduced fit example for a representative participant (Partici-
pant 10), highlighting the reduced blocks and reference intensities. Subplots
include: (a) visual modality as the reference (All Data), (b) visual modality
as the reference (Average + Origin), (c) haptic modality as the reference (All
Data), and (d) haptic modality as the reference (Average + Origin).

(2 data sets x 2 fits) ANOVA revealed a significant effect
of data set (Fi 95 = 6.458,p = 0.0127); there was not a
significant effect of fit (p > 0.05) nor a significant interaction
(p > 0.05). However, the linear fit generally outperformed the
exponential fit.

B. Finding the Optimal Reduced Fit

While the previous analysis included two data sets and two
fits, we focused here on the linear fit for succinctness, as it
generally performed better than the exponential fit and aligned
with the underlying linear relationship in the task. An example
for participant 10 is shown in Fig. 4.

Across the 24 optimal reduced fits produced for each of
the Linear “All Data” and linear “Average + Origin” data
we compared the number of intensities, number of blocks,
21 error, x5 error, cost and R? across the datasets. A paired
Student’s t¢-test revealed a significant effect of data set on
number of blocks (“All”: M=3.54, SD=0.88; “Average +
Origin”: M=2.38, SD=1.06; p<0.001), number of intensi-
ties (“All”: M=5.42, SD=1.44; “Average + Origin”: M=3,
SD=0; p<0.001), z; error (“All”: M=1.4e-03, SD=1.6e-03;
“Average + Origin”: M=5.2e-03, SD=5.1e-03; p=1.19¢e-03),
zo error (“All”: M=1.2e-03, SD=1.7e-03; “Average + Ori-
gin”: M=4.8e-03, SD=7.3e-03; p=2.19¢-02), and R? (“All”:

24 OPTIMAL REDUCED FITS. ‘ALL,” AND ‘AVG + O,” DENOTE THE ALL
DATA AND AVERAGE + ORIGIN DATA SETS.

Reference Intensity

1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9
All 071 058 063 058 075 067 075 0.75
Avg + O 058 029 033 042 042 038 025 033

M=0.66, SD=0.17; “Average + Origin”: M=0.97, SD=0.022;
p<0.001). However, there was not a significant effect on cost
(“All”: M=0.10, SD=8.9¢-02; “Average + Origin”: M=0.15,
SD=0.11; p=0.10).

Table II shows the percentage of times each reference
intensity appeared in the 24 optimal reduced fits. In the
“All Data” dataset, edge reference intensities (e.g., 1/9 and
8/9) were the most frequently used, but overall, the dataset
exhibited some uniformity by often including more than five
intensities. In contrast, the “Average + Origin” dataset, which
used an average of approximately 3.54 reference intensities,
most frequently included the intensities 1/9, 4/9, 5/9, and 6/9,
in that order. This dataset tended to exclude higher reference
intensities.

C. Performance

Participants’ performance was quantified by calculating
the error as the absolute difference between the normalized
matched intensity and the normalized reference intensity.
Then, a paired Student’s t-test was conducted to compare
average errors across the two experiments for each participant.
The test revealed no significant effect of experiment on per-
formance (p > 0.05). However, participants performed better
in the visual reference experiment, as seen in Fig. 5.

To examine the impact of reference intensity on perfor-
mance, a linear model was fit to the error as a function of
reference intensity. In both experiments, the model returned a
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Fig. 6. Participant error as a function of reference intensity, demonstrating
increased error at higher intensities. Subplots include: (a) visual modality as
the reference and (b) haptic modality as the reference.

significant positive slope (visual reference: M=0.33, p<0.001
and haptic reference: M=0.38, p=<0.001 indicating that par-
ticipants performed worse at higher reference intensities, as
shown in Fig. 6.

Similarly, to evaluate the impact of fatigue, a linear model
was fit to the error as a function of block. In both exper-
iments, the model did not yield a significant slope (visual
reference: M=5.7e-04, p>0.05 and haptic reference: M=1.4e-
06, p>0.05), indicating that participants’ performance neither
decreased nor increased as the experiment progressed, as
shown in Fig. 7. This suggests that participants did not suffer
from fatigue over the course of the study.

Finally, the two-way ANOVA on workload ratings revealed
no statistically significant differences in NASA-TLX scores
across task category or reference modality. Additionally, there
was not a significant interaction. The data from the surveys is
summarized in Table III.
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Fig. 7. Participant error as a function of block, showing stable performance
throughout the experiment. Subplots include: (a) visual modality as the
reference and (b) haptic modality as the reference.

TABLE 111
NASA TLX SCORES FOR EACH WORKLOAD DIMENSION ACROSS THE
VISUAL AND HAPTIC REFERENCE CONDITIONS. AVG AND SD DENOTE THE
AVERAGE AND STANDARD DEVIATIONS ACROSS PARTICIPANTS.

Visual Reference = Haptic Reference

Mental Demand -1.25+3.72 0.754+4.77
Physical Demand -3.33+£3.72 -2.58+5.37
Temporal Demand -5.75+£4.18 -6.00+£4.35

Effort 0.17+4.06 2.831+3.66
Frustration -4.50+5.16 -3.08+3.66
Perceived Performance 11.584+5.16 9.58+2.94

IV. DISCUSSION

This study sought to refine cross-modal matching pro-
cedures to enhance perceptual equity in multimodal psy-
chophysics and non-psychophysics experiments by system-
atically evaluating and optimizing experimental parameters.
Twelve participants completed two matching experiments us-
ing the HAND device [6], [7], where they aligned visual and
haptic stimuli according to a visual reference and a haptic
reference (Fig. 1). Data were analyzed using two data sets
(“All Data” and “Average + Origin”) and two fits (linear
and exponential). The linear fit consistently outperformed
the exponential fit, aligning with the task’s inherent linear
relationship. Simulations identified the minimum number of
blocks and reference intensities needed to achieve compara-
ble model fits to the full dataset. The “All Data” approach
utilized a broader range of intensities, while “Average +
Origin” favored low-to-mid-range intensities, excluding higher
ones. Participants showed greater error at higher intensities
but exhibited no signs of fatigue throughout the experiment.
These findings provide actionable guidelines for streamlining
cross-modal matching protocols while maintaining accuracy
and efficiency, contributing to the development of effective
neurorehabilitation experimental protocols.

When comparing goodness of fit (R?), we found that the



“Average + Origin” dataset statistically outperformed the “All
Data” dataset (Table I). This result is supported by mathe-
matical reasoning. The “Average + Origin” dataset uses fewer
data points and averages across blocks, resulting in only one
matched (output) point for each reference (input) point (Fig
2). This reduction in variance around the fit line naturally
increases R?, producing an artificial advantage. It also un-
derscores a trade-off: improved model performance comes
at the cost of ignoring trial-level variability. Importantly, the
“Average + Origin” dataset successfully captures the overall
trend between modalities, which is the primary goal of cross-
modal matching. By prioritizing the overarching relationship,
this approach ensures perceptual equity without being hindered
by the noise of trial-level variations.

While the *Average + Origin’ method modeled the data well
for healthy participants, it inherently assumes no perceptual
bias at no intensity. This assumption may not hold in clinical
populations, such as stroke survivors, who often experience
sensory deficits or altered perceptual baselines. Testing this
paradigm with individuals exhibiting perceptual biases could
reveal whether the “All Data” method provides better fits
under these conditions. Such findings could refine the protocol
further and offer deeper insights into how sensory encoding
variability impacts calibration methods across populations.
These considerations will guide future studies to improve the
adaptability and robustness of cross-modal matching protocols
for motor rehabilitation.

The optimal reduced order fits generated through the Monte
Carlo simulation revealed an important observation: while the
“Average + Origin” dataset achieved a significantly worse x;
and z9 error compared to the “All Data” dataset, the overall
cost was not significantly different between the two data sets
(refer to Section III-B. Upon closer inspection, the errors
in both datasets were quite small (z; error: ~ 1.4 x 1073
and ~ 5.2 x 1073 for “All Data” and “Average + Origin,”’
respectively; x5 error: ~ 1.2 x 1073 and ~ 4.8 x 1073, re-
spectively). This indicates that the “Average + Origin” dataset,
while slightly sacrificing fit accuracy compared to the non-
reduced dataset, achieved this with fewer blocks and reference
intensities. Specifically, the reduced order fit suggested 2-3
blocks and 3 reference intensities. While participants were
allotted 1 minute per trial, they completed each trial in an
average of 12 seconds. Based on this actual performance, a
full experiment following the reduced order fit, including both
reference modalities, would take less than 5 minutes. Even if
participants used the full allotted time, the reduced protocol
would only take 12 to 18 minutes, significantly shorter than the
original maximum length of 64 minutes (4 blocks x 8 reference
intensities x 2 experiments) for the full protocol. The result
is a more efficient experimental protocol that still captures
the cross-modal relationship between modalities. This trade-
off highlights the utility of the “Average + Origin” approach
for balancing experimental efficiency with maintaining critical
insights into sensory integration.

The performance of participants, measured by absolute
error, did not differ significantly between the two tasks (Fig.

5). This result is further confirmed by the NASA-TLX results
which showed no significant differences in workload across the
tasks. This consistency across tasks highlights the robustness
of this cross-modal matching experiment and its potential
applicability beyond the visual and haptic modalities explored
here. Such an approach could be useful for studying other sen-
sorimotor modalities where perceptual equity is critical, such
as auditory-haptic or proprioceptive-visual interactions. Future
work should build on this foundation by conducting similar
experiments to explore these modalities, further broadening
the scope and impact of cross-modal matching techniques in
sensorimotor research.

Participant performance, as measured by absolute error, was
unaffected by the number of blocks in the experiment (Fig. 7).
Performance remained consistent across blocks, indicating no
significant changes due to fatigue or learning effects as the
experiment progressed. This stability suggests that reducing
the number of blocks, as proposed by the reduced order
fit, would not negatively impact the results. By maintaining
consistent performance throughout the task, the reduced order
approach ensures that the overall trends are captured accurately
without compromising the integrity of the data or missing
potential learning effects. This finding further supports the
feasibility of streamlining cross-modal matching experiments
for improved efficiency.

In contrast, there was a clear effect of reference intensity on
participants’ error, with higher errors observed at higher inten-
sities in both experiments (Fig. 6). This trend likely explains
why the optimal reduced fits in the “Average + Origin” dataset
tended to exclude data points at higher reference intensities.
This observation is a critical consideration for future exper-
imenters. It suggests that certain ranges within a modality,
in this case, higher intensities, may lead to diminished partici-
pant performance and weaker correlations between modalities.
To address this, experiments should avoid operating within
these problematic ranges and exclude them from cross-modal
matching tasks to ensure robust results. Our formulation of
finding reduced order fits offers a distinct advantage here: it
programmatically identified these problematic intensity ranges,
and excluded them.

A. Limitations

In this study, we initially compared linear and exponential
fits to the data and found no statistical difference between
the two fits. Based on this result and the predetermined
understanding that the relationship between visual and hap-
tic modalities in this task is inherently linear, we focused
our analysis on linear fits. This approach was justified for
this specific task, as the experimental design deliberately
established a one-to-one relationship between modalities after
normalization. However, other experiments may not have such
a predetermined understanding of the underlying relationship
between modalities. In these cases, it may be necessary to
explore a wider range of models, including nonlinear fits, to
accurately capture the relationship in the data. However, that
is beyond the scope of this study.



Another limitation of this study is that it was conducted
exclusively with healthy participants, which may limit the
generalizability of the findings to clinical populations, such
as stroke survivors. However, our results showed that perfor-
mance remained stable across blocks in healthy participants,
with no evidence of fatigue affecting their performance. This
finding justifies the use of a reduced experimental protocol,
as reducing the number of blocks does not compromise the
quality of the data. Such a streamlined protocol is particu-
larly valuable for patient populations, where fatigue and task
duration are critical concerns. Future research should validate
these reduced protocols with clinical populations to ensure
they retain their effectiveness while accommodating the unique
challenges posed by sensory and motor impairments.

B. Impact

This work advances cross-modal matching experiments by
identifying reduced experimental designs that maintain accu-
racy while minimizing participant fatigue and time require-
ments. Here, we reduced the duration of the study by a factor
of 5. These streamlined protocols are particularly beneficial
in neurorehabilitation, where patients often face physical and
cognitive limitations. By reducing the number of trials and
reference intensities, this approach simplifies the experimental
process while preserving data quality, paving the way for
broader adoption in clinical and research settings.

The study also emphasizes the importance of perceptual
equity in multimodal experiments by providing a framework
for fair comparisons across sensory modalities. By aligning
stimuli to achieve comparable intensities, it addresses a key
challenge in sensory integration research [5]. These princi-
ples extend beyond visual and haptic modalities, offering
a methodological foundation for future studies investigating
other sensory interactions and their roles in motor control and
neurorehabilitation.

The methodological framework introduced in this study
extends beyond the specific task of visual and haptic matching.
By programmatically optimizing experimental parameters, this
approach is scalable to other sensorimotor modalities, such
as auditory-haptic or proprioceptive-visual interactions. This
scalability broadens its applicability to fields like prosthetics,
virtual reality, and human-computer interaction, where multi-
modal integration is critical. Moreover, the ability to efficiently
determine perceptual equity across modalities provides a ver-
satile tool for researchers exploring complex sensory systems,
offering a pathway for advancements in both experimental
research and practical applications.
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